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Introduction
The problem of autonomous learning of affordances typi-
cally requires a robot to learn the types of changes it can
induce and detect in its environment (Sahin et al. 2007;
Sinapov & Stoytchev 2007). In sufficiently complex en-
vironments, however, it is impossible to know in advance
the exact nature and number of possible environmental out-
comes that the robot can induce through its behaviors. In
addition, the changes that the robot can detect are often
high-dimensional, making it difficult to use standard ma-
chine learning algorithms. This work addresses this prob-
lem by proposing a framework in which the robot learns a
taxonomy for the types of perceivable changes produced by
its own behaviors. The proposed method also allows the
robot to incrementally update the taxonomy and to concep-
tualize new types of observed outcomes. In addition, the
robot solves a hierarchical classification task by learning a
model that predicts the future outcome of its behaviors in re-
lation to the learned taxonomy. Thus, the robot builds an af-
fordance ontology consisting of an outcome class taxonomy
and a predictive model grounded in the robot’s perceptual
and behavioral repertoire.

Experimental Setup
The theoretical framework described below was tested on a
tool manipulation task. All experiments were performed us-
ing the open-source dynamic robot simulator BREVE. The
robot is a simulated arm with a gripper attached to the wrist,
as shown in Fig. 1. Two tools were used: a T-Stick tool and
an L-Stick tool. The last object in the simulation is a small
cylindrical puck which can be moved by the tool when the
robot performs an action. Videos of the simulation are avail-
able at http://www.cs.iastate.edu/˜jsinapov/AAAI08/.

The robot’s set of behaviors, B, consists of 6 possible be-
haviors with the tool: push, pull, slide left, slide right, rotate
left, and rotate right. The robot’s cue, Ci, is a 30 by 30
retinal image centered on the puck, as shown in Fig. 2 c).
The observed outcome Oi is 12-dimensional and describes
the puck’s vertical and horizontal displacement (relative to
the puck’s starting position) in the robot’s field of view over
the course of 60 simulator time steps, and sampled every 10
frames, as shown in Fig. 2 d).
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a) b)

Figure 1: a) Snapshot of the robot arm in the dynamics sim-
ulator; b) View from the robot’s simulated camera.
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Figure 2: A trial with the L-Stick tool and rotate right be-
havior; a) view at beginning of trial; b) view at end of trial;
c) retinal mapping image used as cue at beginning of trial;
d) observed outcome plotted as a trajectory at end of trial.

Theoretical Model
Let Xi = (Bi, Ci) be an input data point indicating that the
robot is executing behavior Bi ∈ B while detecting a cue
Ci ∈ R

n. Let Oi ∈ R
m describe the detected outcome (e.g.,

visual movement) after the behavior Bi has been executed.
Because Oi can be high-dimensional, it is difficult to learn

a model to predict Oi given Xi using standard machine
learning algorithms designed for output classes with a single
label. To address this problem, the robot learns a hierarchi-
cal taxonomy of outcomes, T , which is a tree defined over
outcome classes (i.e., nodes) v0, . . . , vM . Let Omean

j ∈ R
m

denote the outcome prototype for the observed outcomes
that belong to node vj . Outcome classes can vary from spe-
cific (near the bottom of the tree) to more general (near the
top of the tree). In the experiments conducted for this study,
the taxonomy is learned using an incremental hierarchical
clustering framework in which an outcome class vj in T is
split into sub-classes once the number of observed outcomes
that fall into it reaches a threshold. The split operation adds
child nodes to vj resulting in more refined outcome classes.
The split is performed using the X-Means clustering algo-
rithm.



The robot incrementally updates the taxonomy T while
learning a model M(Xi) → P̂i that predicts a path, P̂i =
[v0, . . . , vl], from the root node v0 to some leaf node vl

in T which describes how the predicted outcome relates
to the learned taxonomy. To solve the hierarchical clas-
sification problem required for this, each non-leaf node j
has an associated model Mj which is trained to predict
the child outcome class of the (yet unobserved) outcome
Oi associated with Xi. Formally, Mj(Xi) → ĉk where
ĉk ∈ children(vj). For example, the root node in the tax-
onomy shown in Fig. 3 contains a model M0 which given an
input Xi predicts which child outcome class (v01, v02, v03

or v04) the future outcome Oi belongs to. Thus, applying a
recursive top-down prediction routine results in a predicted
path, P̂i, from the root node to a leaf node in the tree. Each
model Mj is realized by an incremental ensemble classifier
framework.

In summary, the robot learns an affordance ontology A =
{T ,M}, where T is the hierarchical taxonomy of outcomes
induced by the robot’s behaviors B, and M is the set of pre-
dictive models contained in the non-leaf nodes of T .

Experiments and Results
Experiment 1: In the first experiment, the robot conducts

1200 trials with the L-Stick. During each trial, the puck is
randomly placed near the tool and a random behavior is se-
lected for execution. After the 200th trial, the first split of
the root node in T occurs, resulting in four child outcome
classes. After all 1200 trials, the robot has formed 13 leaf
outcome classes. A partial visualization of the learned tax-
onomy is shown in Fig. 3. The root outcome class, v0, con-
tains all observed trajectories of the puck as a result of per-
forming a behavior with the L-Stick. When evaluated on a
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Figure 3: A partial visualization of the learned outcome tax-
onomy, T , after 1200 trials with the L-Stick tool. For each
outcome class vj the darker trajectory denotes the outcome
prototype Omean

j , while the lighter trajectories visualize the
observed outcomes that fall within vj . The full taxonomy is
shown in the accompanying web page.
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Figure 4: New leaf outcome classes formed after interaction
with the T-Stick and inserted into the taxonomy built through
interaction with the L-Stick (see Fig. 3)

set of 600 test trials, all predictive models in M achieve an
Area Under ROC Curve (AUC) (averaged over class labels)
between 0.82 and 1.0 with the majority higher than 0.9, in-
dicating that the robot is capable of predicting the outcome
classes given its cues and behavior.

Experiment 2: The second experiment tests how the
robot can adapt an already learned affordance ontology
when a new tool is introduced. To do that, 1200 trials were
performed with the L-Stick (resulting in the outcome taxon-
omy shown in Fig. 3), followed by 1200 trials with the T-
Stick tool. Unlike the L-Stick, the T-Stick allows the robot
to bring the puck closer by also rotating the tool to the left.

After the 920th trial with the T-Stick tool, one of the
leaf outcome classes, v01 (see Fig. 3) is split and three
child nodes are added (shown in Fig. 4). The new leaf
node v013 is the outcome class that is formed to describe
the novel outcomes observed only with the T-Stick. The
newly formed model M01 achieves an AUC of 0.98 when
evaluated on novel trials with both tools, indicating that
the robot has learned to accurately distinguish between the
novel outcome classes v011, v012, v013 based solely on its
sensory input, without explicitly knowing which of the two
tools it is currently using. Additional details and full visu-
alization of the learned outcome taxonomies are available at
http://www.cs.iastate.edu/˜jsinapov/AAAI08/.

Conclusion and Future Work
The experiments show that by learning an affordance ontol-
ogy with an adaptive taxonomy, the robot can form hierar-
chically structured outcome classes that accurately describe
the changes it can induce and detect in its environment. The
robot also learns predictive models that allow it to antici-
pate the outcomes of its actions in advance. In future work,
the framework can be improved through the use of more
advanced taxonomy learning algorithms as well as dealing
with outcomes that describe how the robot’s action impacts
more than a single object. The framework will also be im-
plemented and evaluated on a 7-DOF Barrett WAM robot
arm.
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