
At FORUM AI MEETS NS

understanding that are known to be adequate in a scientific sense.
It follows that he cannot know that certain people at certain times
do not understand in Parry-or Eliza-like ways. That is to say, he
has no way of knowing that we do not ourselves sometimes function
by means of "clever tricks".

Finally, of course we i~arpret responses "in a manner which
may indeed allow (us) to conclude that (we) are being 'understood'
. . . " We do it wlfh people, and we do it with machines, because
that is what understanding is about, ar~how could the world be
otherwise? The basic flaw in McLeod's position is that, like a lot of
people, scientific and lay, he believes the (].) there really is some
definitive process or feeling called UNDERSTANDING or BEING-
UNDERSTOOD, and (2) that we can know for absolute certainty when
we experience it, and (3) we can therefore contrast this feeling
with one we have about a machine that. "appears" to understand.
These assumptions are, alas, false, at.least from any scientific point
of view, and the fact that Humbert Dreyfus has given a
sophisticated philosophical defense [W&zt Com.pu.ter$ Can.'t Do,
Harper and Row, New York, 1972.] of a position very like that of
(1)-(3) above, does not make it any more plausible to anyone who
believes that the only serious test we can have is how a system
bohc~ues.

If one sticks to this simple, but firm, principle of machine
performance, then McLeod's position will only make sense if and
when he can tell us what it would be like to know of any machine
that it red ly understood, and didn't just ~em to do so. I do not
believe that this distinction makes much sense, largely because (1)-
(3) are false assumptions, yet they are the unexamined foundations
of those who argue like Mr. McLeod.

ARTIFICIAL INTELLIGENCE MEETS NATURAL STUPIDITY
Drew McDermoH

MIT At Lab Cambridge, Mass 02139

As a field, artificial intelligence has always been on the border
of respectability, and therefore on the border of crackpottery.
Many critics <Dreyfus, 1972>, <Lighthill, 1973> have urged that we
are over the border. We have been very defensive toward this
charge, drawing ourselves up with dignity when it is made and
folding the cloak of Science about us. On the other hand, in private,
we have been justifiably proud of our wil#ingness to explore weird
ideas, because pursuing them is the only way to make progress.

Unfortunately, the necessity for speculation has combined with
the culture of the hacker in computer science <Weizenbaum, 1975>
to cripple our self-discipline. In a young field, ,~elf-discipline is not
necessarily a virtue, but we are not getting any younger. In the
past few years, our tolerance of sloppy thinking has l ed us to
repeat many mistakes over and over. If we are to retain any
credibility, this should stop.

This paper is an effort to ridicule some of these mistakes.
Almost everyone I know should find himself the target at some
point or other; if you don't, you are encouraged to write up your
own favorite fault. The three described here I suffer from myself.
I hope self-ridicule will be a complete catharsis, but t doubt it. Bad
tendencies can be very deep-rooted. Remember, though, if we can't
criticize ourselves, someone else will save us the trouble.

Acknow~dEmer~t-- I thank the AI Lab Playroom crowd for
constructive play.

Wishful Mnemonics
A major source of simple-mindedness in AI programs is the use

of mnemonics like "UNDERSTAND" or "GOAL" to refer to programs
and data structures. This practice has been inherited from more

traditional programming applications, in which it is liberating and
enlightening to be able to refer to program structures by their
purposes. Indeed, part of the thrust of the structured programming
movement is to program entirely in terms of purposes at one level
before implementing them by the most converiient of the
(presumably many) alternative lower-level constructs.

However, in At, our programs to a great degree are problems
rather than solutions. If a researcher tries to write an
"understanding" program, it isn't because he has thought of a better
way of implementing this well-understood task, but because he
thinks he can come closer to writing the [/~rs~ implementation. If he
calls the main loop of his program "UNDERSTAND '~, he i s (unt i l
proven innocent) merely begging the question. He may mislead a lot
of people, most prominently himself, and enrage a lot of others.

What he should do instead is refer to this main loop as
"G0034", and see if he can corwi.nw;e himself or anyone else that
G0034 implements some part of understanding. Or he could give i t
a name that reveals its intrinsic properties, like NODE-NET-
INTERSECTION-FINDER, it being the substance of his theory that
finding intersections in networks of nodes constitutes
understanding. If Quillian <1969> had called his program the
"Teachable Language Node Net Intersection Finder", he would have
saved us some reading. (Except for those of us fanatic about
finding the part on teachability.)

Many instructive examples of wishful mnemonics by AI
reseai'chers come to mind once you see the point. Remember GPS?
<Ernst and Newell, 1969> By now, "GPS" is a colorless term
denoting a particularly stupid program to solve puzzles. But i t
originally meant "General Problem Solver", which caused everybody
a lot of needless excitement and distraction. It should have been
called LFGNS -- "Local-Feature-Guided Network Searcher".

Compare the mnemonics in Planner <Hewitt,1972> with those in
Conniver <Sussman and McDermott, 1972>:

Planner ~ n g i y e r
GOAL FETCH & TRY-NEXT
CONSEQUENT IF-NEEDED
ANTECEDENT IF-AODED
THEOREM METHOD
ASSERT ADD

It Js so much harder to write programs using the farina on the right!
When you say (GOAL . . .) , you can j:ust feel the enormous power at
your fingertips. It is, of course, an illusion.

Of course, Conniver has some glaring wishful primitives, too.
Calling "multiple data bases" CONTEXTS was dumb. It implies that,
say, sentence understanding in context is really easy in this system.

LISP's mnemonics are excellent in this regard. <Levin at. el.,
1965> What if atomic symbols had been called "concepts", or CONS
had been called ASSOCIATE? As it is, the programmer has no debts
to pay to the system. He can build whatever he likes. There are
some minor faults; "property lists" are a little risky~ but bY now the
term is sanitized.

Resolution theorists have been pret ty good about wishful
mnemonics. They thrive on hitherto meaningless words like
RESOLVE and PARAtvIODULATE, which can only have their humble,
technical meaning. There are actually quite few pretensions in the
resolution literature. <Robinson, 1965> Unfortunately, at the top of
their intellectual edifice stand the word "deduction". This is uary
wishful, but not entirely their fault. The logicians who first misused
the term (e.g., in the "deduction" theorem) didn't have our problems;
pure resolution theorists don't either. Unfortunately, too many A]
researchers took them at their word and assumed that deduction,
like payroll processing, had been tamed.

Of course, as in many such cases, the only consequence in the
long run was that "deduction" changed in meaning, to become
something narrow, technical, and not e little sordid.

Page 4 SIGART Newsletter No. 57 Apt't# 1976

AI MEETS NS

STATE-OF-MIND
1̀
I IS-A
I

"HAPPINESS

As AI progresses (at least in terms of money spent), this
malady gets worse. We have lived so long with the conviction that
robots are possible, even just around the corner, that we can't help
hastening their arrival with magic incantations. Winograd <1971•
explored some of the complexity of language in sophisticated detail;
and now everyone takes "natural-language interfaces" for granted,
though none has been written. C!larniak <1972> pointed out some
approaches to understanding stories, and now the OWL interpreter
includes a "story-understanding module". (And, God help us, a top-
level "ego loop". <Sunguroff, 1975>)

Some symptoms of this disease are embarrassingly obvious
once the epidemic is exposed. We should avoid, for example;
labeling any part of our programs as an "understander". It is the
job of the text accompanying the program to examine carefully how
much understanding is present, how it got there, and what its limits
are.

But even seemingly harmless mnemonics should be handled
gingerly. Let me explore as an example the ubiquitous "IS-A link",
which has mesmerized workers in this field for years. <Quilllan,
1968, Fahlman, 1975, Winograd, [975> I shall take examples from
Fahlman's treatment, but what] say is criticism of calling the thing
"IS-A", not his work in particuJar.

An IS-A link joins two nodes in a "semantic net" (a by-now
emasculated misnomer), thus=

DOG

I I S - A
1

FIDO
which is presumably meant to express "Fido is a dog". However,
the /.n.tr/.nJ~ description of this link is "indicator-value pair
inheritance link". That is, if the piece of network

HAS-AS-PART
DOG > TAlL

1̀
I IS-A
I

FIDO
is present, then implicitly, "FJdo has [a] tail" is prf~sent as w e l t
Here HAS-AS-PART is the indicator, TAIL the value.

Most readers will think it extreme to object to calling this IS-A.
Indeed, a self-disciplined researcher will be safe. But many people
have fallen into the following IS-A traps:

Often, a programmer will shut his mind to other interpretations
of IS-A, or conclude that IS-A is a very simple concept. Then he
begins to write nonsensical networks like

CONCEPT S I MPLE-TH I NG
\ /

IS-A \ I IS-A
\ /

SIMPLE-CONCEPT
1̀
I IS-A
I

IS-A
or suspiciousJy wishful netwo.r~sJi~e

BINARY-IRANSITIVE-
RELATION

I IS-A
l

GREATER-THAN
This is an illustration of"contagJous wishfulness": because one

AI.MEETS NS

piece of a system is labeled Impressively, the things it interacts
with inherit grandiosity. A program called "THINK" is likely
inexorably to acquire data structures called "THOUGHTS".

A good test for the disciplined programmer is to try using
gensyms in key places and see if he still admires his system. For
example, if STATE-OF-MIND is renamed G1073; we might have:

61973
1̀
I I NHER ITS- I NOI CATORS
I

HAPP I NESS
which looks much more dubious.

Concepts borrowed from human language must shake off a Io'.~
of surface-structure dust before they become clear. (See the next
section of this paper.) "Is" is a complicated word, syntactically
obscure. We use it with great facility, but we don't understand it
well enough to appeal to it for clarification Of anything. If we want
to call attention to the "property inheritance" use, why not just say
INI4ERITS-INOICATORS? Then, if we wish, we can prove from a
completed system that this captures a large part of what "is a"
means.

Another error is the temptation to write networks like this:

L ! VES- I N HAS-AS-PART
AFRICA < ELEPHANT • TUSKS

1'
I IS-A
I

RALPH
which people do all the time. It is clear to them that Ralph lives in
Africa, the same Africa as all the other elephants, but his tusks are
his own. But the network doesn't say this. Woods <1975>
discusses errors like this in detail.

People reason circularly about concepts like IS-A. Even if
originally they were fully aware they were just naming INHERITS-
INDICATORS with a short, friendly mnemonic, they later use the
mnemonic to conclude things about "is a". For example, although he
is aware of complexities, Fahlman proposes that a first cut at
representing "Nixon is a Hitler" is:

HI TLER
1̀
I IS-A
I

NI XON
It worked for Fido and Dog, didn't i.t? Bur.we lust can't take stuff
out of the IS-A concept that we never put in. I find this diagram
worse than useless.

Lest this all seem merely amusing, meditate on the fate of
those who have tampered with words before. The behavi.orists
ruined words like "behavior", "response", and especially, "learning".
They now pl-ay happily in a dream world, internally consistent but
lost to science. And think on this: if "mechanical translation" had
been called "word-by-word text manipulation", the people doing it
might still be getting government money.

Unnatural Language
In this section I wish to rail against a pervasive sloppiness in

our thinking, the tendency to see in natural language a natural
source of problems and solutions. Many researchers tend to talk as
if an internal knowledge representat!on ought to be closely related
to the "corresponding" English sentences; and that operations on
the structure should resemb.le human conversation or "word
problems". Because the fault here is a disregard for logic, it will be
hard for my criticism to be logical and clear. Examples will help.

A crucial problem in internal representation is effective naming

SIGART Newsletter No. 57 April 1976 Page 5

At MEETS N5

of entities. Although every entity can be given a primary name of
some kind, much information about it will be derived from
knowledge about roles it plays.]f iwo persons marry and have
children, then they play the role of parents in whatever data
structure encodes knowledge of the family. Information about them
(such as, "parents are older than their children") will be in terms of
PARENT-./ and PARENT-2 (or '%other" and "father" if they are of
opposite sexes). The naming problem is to ensure that information
about PARENT-/ is applied to the primary name G0073 when it is
discovered that G0073 shares a family with G0308.

The "natural-language fallacy" appears here in the urge to
identify the naming problem with the problem .of resolving
references in English-language discourse. Although the two
problems must at some remote intersection meet, it seems to me to
be a waste of time to focus on their similarities. Yet it is hard to
avoid the feeling that our ability to understand "the mother" to
mean "Maria" is the same as the internal function of "binding"
PARENT-/ to GO073. But it can't be.

The uses of reference in discourse are not the same as those
of naming in internal representation. A good reason to have
differing referential expressions in natural language is to pick out
an object to talk about with the least amount of breath. After all,
the speaker already knows exactly what he wants to refer to~ if he
says, "the left arm of the chair" in one place, "the arm" in another,
and "it" in a third, it isn't because he thinks of this object in three
different ways. But internally, this is exactly the reason for having
multiple names..Different canonical data structures with different
names for the constituent entities come to be instantiated to refer
to the same thing In different ways. The internal user of such a
structure must be careful to avoid seeing two things where one is
meant.

In discourse, a speaker Will introduce a hand and easily refer
to "the finger". Frame theorists and other notation-developers find
it marvelous that their system practically gives them "the finger"
automatically as a piece of the data structure for "hand". As far as
I can see, doing this automatically is the worst way of doing it.
First, of course, there are four or five fingers, each with its own
name, so "the finger" will be ambiguous.

Second, a phrase like "the finger" can be used in so many
ways that an automatic evaluation to FINGER 109 will be wasteful at
best. There are idioms to worry about, as in, "He raised his hand
and gave me the finger". (Are we' to conclude that the "default
finger in the hand frame" is the middle finger?) But even ignoring
them, there are many contexts where "the" just doesn't mean what
we would like it to. For example, "He removed his glove and ! saw
the finger was missing". This is like, "The barn burned to the
ground five years ago and was completely rebuilt". There are
logics in which the same BARN /051 can have different
"denotations" in different time periods, but do we really want this
clumsiness in the heart of our internal represen.tation?

]t seems much smarter to put knowledge about translation
from natural language to internal representation in the natural
language processor, not in the internal representation. I am using
"in" loosely; my intent is to condemn an approach that translates
language very superficially (using a little syntax and morphology)
and hands it to the data base in that form. Instead, the language
routine must draw on knowledge about all parts of the sentence in
translating "the finger". Its output must be a directly useful
internal representation, probably as remote as possible from being
"English-like".

These problems stem from a picture of a program constructed
of. cooperating modules that "talk to" each other. While this may be
a reasonable metaphor in some woys, anyone who has actually
written such a program knows that "talking" is a very poor model of

At MEETS NS

the communication. Yet many researchers (most extremely
<Stansfield, 1975> and <Hawklnson,J975>) find English t o be the
ideal notation in which to encode messages. They are .aware that
message-passing channels are the most frustrating bottleneck
through which intelligence must pass, so they wish their way into
the solution: let the modules speak in human tonguesl Let them use

metaphor, allusion, hints, polite requests, pleading, flattery', bribes,
and patriotic exhortations to their fellow modrulesl

It is hard to say where they have gone wronger, in
underestimating language or overestimating computer programs.
Language is only occasionally a medium of communication of
information; even when it is, the ratio of information to packaging Is
low. The problem of a language speaker is to get the directed
attention of an unprepared hearer and slide some information into
his mind in a very short time. Since the major time sink is moving
his mouth, the language sacrifices everything else to brevity~
forcing the hearer to do much quick thinking to compensate.
Furthermore, since the speaker doesn't quite know the organization
of his heater's mind, his phrasing of information and packaging must,
except for the most stereotyped conversations, be an artwork of
suggestiveness and insight.

Communication between computer programs is under
completely, different constraints. At the current stage of research,
it is ridiculous to focus on anything but raw communication of
information~ we are unable to identify where more devious, Freudian
intercourse might occur. Packaging and encoding of the information
are usually, already done. Ambiguity isavoidable. Even brevity is
unimportant (at least for speed), since a huge structure can be
transmitted by passing a'n internal name or pointer to it shared by
sender and receiver. Instead, the whole problem is getting the
hearer to notice what it has been told. (l~k~t "understand", bu t
"notice". To appeal to understanding at this low level will doom us
to tail-chasing failure.) The new structure handed to the receiver
should give it "permission" to make progress on its problem. If the
sender could give more detailed instructions, it could just execute
them itself. Unfortunately, the latitude this leaves the receiver is
wasted if it is too "narrow-minded" to see the usefulness of what It
has received. (The <1962 > paper by Newell on these topics is still
the best.)

Everyone who has written a large A] program will know what]
am talking about. In this communication effort, the naming problem
can be irritating, since the sender must make sure the receiver
understands its terms. But there are so many approaches to
solving the problem (for example, by passing translation tables
around), which are not open to conversing humans, that it recedes
quickly into the background. The frustrations lie etsewhere.

Reference is not the only "unnatural language" problem. A
related one is the feeble analysis of.concepts like "the" and "a" by
most A] researchers. There is a natural inclination to let "the" flag
a definite description and "a" an existential quantifier (or
occasionally a description). Except for De/c, Janm arv:~ Sa.U~,, and
some of Bertrand Russell's work; this apPrOach is not even an
approximation.

First the typical noun phrase is not directly translated into the
internal representation at all, and does not wind up as an object
name. For example, "Despite the peripatetic nature of American
students and their families . . . , there remain wide gaps and serious
misconceptions in our undei-standing of other peoples and cultures".
(MQdi.a and Moth.otis JJ, No. 2, (1974), p. 43.) Translating this
sentence (whose meaning is transparent) is problematic in the
extreme. The author means to allude to the fact that Americans
travel a lot, as a way of getting around to the claim that they don't
travel enough or well enough. Why? We don't know yet why
people talk this way.. But translation methods that' worked on "the

Page 6 SIGART Newsletter No. 57 April 1976

AI MEETS NS AI MEETS NS

big red block" will not succeed, and cannot be aztenx~ed to succee.d,
on " t h e . . . nature of American students".

Second, the difference between "the" and "a" is not the
difference between "definite" and "indefinite", except vacuously.
For example, what is the difference in meaning between

"Due to the decrease in the American birthrate in the 1960's,
our schools are underutilized".

"Due to a decrease in the American birthrate in the 1960's, our
schools are underutilized".

!n most respects, they "mean" exactly the same thing,' since
there can have been only one decrease in the birthrate in the
1960's, and each sentence presupposes that it occurred. But in one
the author is assuming we know it already; in the other, he is more
casual about whether we do or not. We have no theory at all about
what difference this difference makes.

!t is unfortunate that a logical back seepage has caused people
to see words like "the", "a", "all", "or", "and", etc. as being
embellished or ambiguous versions .of "iota", "3", "Y", "v", and "^".
To cure yourself of this, try examining two pages of a book for ten-
year olds, translating the story as you go into an internal
representation. (! found <Kenny, 1963>, pp. 14-15 useful.) !f you
can do this without difficulty, your case is hopeless.

The obsession with natural language seems to have caused the
feeling that the human use of language is a royal road to the
cognitive psyche.] f i n d this analogous to preoccupation with
imagery as a way of studying vision. Most A! researchers react
with amusement to proposals to explain vision in terms of stored
images, reducing the physical eye to the mind's eye. But many of
the same people notice themselves talking to themselves in English,
and conclude that English is very close to the language of thought.

Clearly, there must be some other notation, different in
principle from natural language, or we wilt have done for the ear
what imagery theory does for the eye. No matter how fascinating
the structure of consciousness is, it is dangerous to gaze too long
into its depths. The puzzles we find there can be solved only by
sneaking up on them from behind. As of now, we have no idea at
all why people .experience their thoughts the way they do, in
pictures and words, it will probably turn out to be quite different,
even simpler, than what we think .now, once we. understand why and
how people experience their thoughts at all.

!n the meantime, for many people, natural language has
become the preferred means of stating problems for programs to
solve. For example, research that began as a study of visual
recognition becomes a study of how people come up with an animal
that is white, has hooves, and one horn in the middle of its head.
People can do this (and get "unicorn"), but the fact that they can
obviously has nothing to do with visual recognition.]n visual
recognition, the main problems are guessing that' you're looking at
an animal in the first place, deciding that thing is a horn and that it
belongs to the head, deciding whether to look for hooves, etc. The
problem as stated in natural language is just not the same. (For
example, the difficulties raised by the fact that ! omitted presence
or absence of wings from my descriptJor~ are different from the
corresponding visual problems.)

Linguists have, ! think, suffered from this self-misdirection for
years. The standard experimental to01 of modern !inguistics is the
el!citing of judgments of grammaticality from nativespeakers.
Although anyone can learn how to make such judgments fairly
quickly, it is plainly not a skill that has anything to do with ability to
speak English. The real parser in your head is not supposed to
report on its inputs' degree of grammaticality; indeed, normally it
doesn't "report" at all in a way accessible to verbalization. !t just
tries to aid understanding Of what it hears as best it can. So the
grammatlcality judgment task is completely artificial. It doesn't
correspond to something people normally do.

Linguists, of course, have a place in their ontology for these
judgments. They are a direct road to the seat of linguistic
"competence". A! people find this notion dubious. They would be
just as suspicious if someone claimed a good way to measure "visual
recognition competence" was to measure the ability of a subject to
guess where the cubes were in a scene presented to him as an
English description of intensity contours. ("A big steep one in the
corner, impetuous but not overbearing".)

Eventually, though, we all trick ourselves into thinking that the
statement of a problem in natural language, is natural. One form of
this self-delusion that ! have had difficulty avoiding is the
"information-retrieval fixation", it dates from Winograd's <1971>
analysis of questions like, "DO ! like any pyramids?" as a simple
PLANNER program like (THAND (THGOAL (LIKE W[NOGRAD ?X))
(THGOAL (!$ PYRAMID ?X))). This was entirely justified in the
context he was dealing with, but clearly a stopgap. Nonetheless,
nowadays, when someone invents a representation or deduction
algorithm, he almost always illustrates it with examples like this,
couched either in natural language or a simple translation like
(THAND...).

This tight coupling of internal and external problem statements,
if taken seriously, reduces the chance of progress on
representation and retrieval' problems. !f a researcher tries to
think of his problem as natural-languagequestion answering, he is
hurt by the requirement that the answers be the results of
straightforward data-base queries. Real discourse is almost never
of the literal-minded information-i-etrieval variety. !n real
discourse, the context leading up to a question sets the stage for it,
and usually affects its meaning considerably. But, since the
researcher is not really studying language, he cannot use the
natural-language context. The only version of natural language he
can have in mind must exclude this example of a conversation
between two programmers on a system with six-letter file names=

"Where is the function TRY-NEXT defined?"
"in the file TRYNXT >". (pronounced TRY-NEXT)
"How do you spell ~TRY-NEXT'?"
"Omit the a".

Such contextual and intentional effects are distracting at best for
the designer of a data base; presumably they are normally helpful
to humans.

The other course is to concentrate on handling the query after
it has been translated into (THAND...), but if this formula is still
thought of as a direct translation o f an English question, the
approach ignores whatever framework a system might use to focus
its computational attention. Generally a program builds or prunes
its data.structure as it goes, organizing it in such a way that most
queries worth making at all can be handled with reasonable
efficiency. Just picking the THAND problem out of the blue throws
this organization away. This is what happens with the naive
natural-language information-retrieval paradigm. A researcher who
designs his retrieval algorithm around the case Of a completely
unmotivated formal query is likely to become preoccupied with
problems like the efficient intersection of lists of likable objects and
pyramids. <Nevins, 1974, Fahlman, 1975> !n the design of
programs whose knowledge is organized around problems, such
issues are not nearly as important.

Someone must still work on the context-free English query
problem, but there is no reason to expect it to be the same as the
data-base retrieval problem. Besides, it might turn out that natural
language is not the best notation for information retrieval requests.
Perhaps we should postpone trying t o get computers to speak
English, and try programming librarians in PL/t!

In this section] 'have been harsh toward A['s tendency to
oversimplify or overglorify natural language, but don't think that my

S[GART Newsletter No. 57 April 1976 Page 7

A! MEETS NS

opinion is that research in this area is futile. |ndeed, probably
because] am an academic verbalizer, ! feel that understanding
natural language is the most fascinating and important research goal
we have in the long run. But it deserves more attention from a
theoretical point of view before we rush off and throw together
"natural-language" interfaces to programs with inadequate depth.
We should do more studies of what language is for, and we should
develop complex programs with a need to talk, before we put the
two together.

"**Only a Preliminary Verelon of the Program was Actually
Implemented"

A common idiocy in A! research is to suppose that having
identified the shortcomings of Version I of a program is equivalent
to having written Version IL <McDermott, 1974a, Sussman, 1975,
Goldstein, 1974> Of course, the sincere researcher doesn't think of
his actions this way. From my own experience, the course of a
piece of research is like this:

Having identified a problem, the ambitious researcher stumbles
one day upon a really good idea that neatly solves several related
subproblems of it at once. (Sometimes the solution actually comes
before the problem is identified.) The. idea is formally pretty and
seems to mesh smoothly with the way a rational program ought to
think. Let us call it !'sidetracking control structure" for
concreteness. The researcher immediately implements an elegant
program embodying automatic sidetracking, with an eye toward
applying it to his original problem. As always, implementation takes
much longer than expected, but matters are basically tidy.

However, as he develops and debugs this piece of code, he
becomes aware that there are several theoretical holes in his
design; and that it doesn't work. It doesn't work for good and
respectable reasons, most of them depending on the fact that the
solution to the problem requires more than one good idea. But,
having gotten a framework, he becomes more and more convinced
that those small but numerous holes are where the good ideas are
to fit. He may even be right.

Here, however, he begins to lose his grip. |mplementing
Version !, whose shortcomings are all too obvious, was exhausting;
it made him feel grubby for nothing. (Not at all like the TECO
macros he took time out for along the way!) He feels as though
he's paid his dues; now he can join the theoreticians. What's more,
he should.]mplementation details will make his thesis dull. The
people want epL~rento~g:y.

Simultaneously, he enjoys the contradictory feeling that the
implementation of Version |l would be easy. He has reams of notes
on the holes in Version ! and how to fill them. When he surveys
them, he feels their master. Though a stranger to the trees, he can
talk with confidence about the forest. !ndeed, that is precisely
what he does in his final document. It is full of allusions to a
program he seems to be claiming to have written. Only in a
cautious footnote does he say, "the program was never actually
finished", or, % preliminary version of the program was actually
written".

This final report can have interesting quirks.]t is likely to be
titled A S~:te-Tro.ck~r~g Control Stru.cture Approo.ch to Porn..,oR'ro.phi¢
Ouesti.orL-AnJuJerLnQ', because the author's fondness for sidetracking
never quite left him. I..k)wever, sidetracking is the only part of the
solution he really understands, so he is likely to be quite diffident
about it. He feels much better about the multitude of patch
mechanisms which he describes. He designed them as solutions, not
problems; he wisely avoided implementing them and spoiling the
illusion, so he can talk at length about how each one neatly ties up
a loose end of sidetracking.

The final report usually pleases most people (more people than

A! MEETS NS

it should), impressing them but leaving them a little hungover. They
are likely to be taken with sidetracking, especially if a theorem
about it is proved, but the overall approach to the real problem
lacks definition. Performance and promise run together like the
colors of a sunset. The happy feeling is kindled in the reader that
indefinite progress has already started. On the other hand, they
usually know the author's approach won't solve everything; he
avoids claiming this. So the document fails to stimulate or challenge;
it merely feeds the addict's desire for reassurance that A! is not
standing still, and raises his tolerance a little.

This muddle finally hurts those following in the researcher's
path. Long after he has his Ph.D. or his tenure, inquiring students
will be put off by the document he has left behind. He seems to
have solved everything already, so the report says, yet there is no
tangible evidence of it besides the report itself. No one really
wants to take up the problem again, even though the original
research is essentially a partial success or even a failure!]f a
student decides sidetracking is a good idea, and wants to study it,
people will assume he is "merely implementing" an already fully
designed program. (No Ph.D. for that!) He would be willing or even
eager to start from a smoothly running Version !l and write Version
Ill, incorporating a new theoretical Idea like Syntactic Network Data
Bases, but there is no Version |!. Even e Version I would help, but
it isn't really working very well and its author has no desire for it
to be publicized.

Of course, the student can turn his back on sidetracking, and
develop an entirely new approach to Pornographic Question
Answering. But this will only antagonize people. They thought
they understood sidetracking; they had convinced themselves it
could be made to work. Disagreeing will only confuse them.
Besides, it probably could have been made to work. If only its
inventor had left it an open question!

This inflationary spiral can't go on forever.. After five theses
have been written, each promising with fuzzy grandeur a different
solution to a problem, people will begin to doubt that the problem
has any solution at all. Five theses~ each building on the previous
one, might have been enough to solve it completely.

The solution is obvious: insist that people report on Version I
(or possibly "| 1/2"). If a thorough report on a mere actual
implementation were required, or even allowed, as a Ph.D. thesis,
progress would appear slower, but it would be real.

Furthermore, the program should be user-engineered enough
end debugged enough so that it can be run by people besides its
author. What people want to know about such a program is how far
they can diverge from the examples given in the thesis before it
fails. Think of their awe when they discover that the hardest cases
it handles weren't even mentioned! (Nowadays, the cases
mentioned are, at the very best, the onJy ones the program
handles.)

When a program does fail, it should tell the explorer why it
failed by behavior more illuminating than, e.g., going into an infinite
loop. Often a program will begin to degrade in time or accuracy
before it fails. The program should print out statistics showing its
opinion of how hard it had to work ("90,265 sidetracks"), so the
user will not have to guess from page faults or console time. If he
wishes to investigate further, a clearly written, up-to-date source
program should be available for him to run interpretively, trace, etc.
(More documentation should not be necessary.) In any other branch
of computer science, these things are taken for granted.

My proposal is that thesis research, or any other two-year
effort, should be organized as follows:

As before, a new problem, or oM problem with pcrt:i.o.J eol, u.t~a,
should be chosen. The part of the problem where most progress
could be made (a conceptual "inner loop") should be thought about

Page 8 SiGART Newsletter No. 57 April 1976

AI MEETS NS AI MEETS NS

hardest. Good ideas developed here should appear in a research
proposal.

The first half of the time allotted thereafter should be applied
to writing Version n+l, where n is the version number you started
with (O for virgin problems). (Substantial rewriting of Version n
should be anticipated.) The second half should be devoted to writing
the report and improving Version n+l with enough breadth, clean
code, and new user features to make it useful to the next person
that needs it.

The research report will then describe the improvements made
to Version n, good ideas implemented', and total progress made in
solving the original problem. Suggestions for further improvements
should be included, in the future subjunctive tense.

The standard for such research should be a partial success,
but AI as a field is starving for a few carefully documented failures.
Anyone can think of several theses that could be improved
stylistically and substantively by being rephrased as reports on
failures. ! can learn more by just being told why a technique won't
work than by being made to read between the lines.

Benediction
This paper has focussed on three methodological and

substantive issues over which we have stumbled. Anyone can think
of more. I chose these because I am more guilty of them than other
mistakes, which I am prone to lose my sense of humor about, such
as:

1. The insistence of AI people that an action is a change
of state of the world or a world model, and that
thinking about actions amounts to •stringing state
changes together to accomplish a big state change.
This seems to me not an oversimplification, but a false
start. How many of your actions can be characterized
as state changes, or are even performed to effect state
changes? How many of a program's actions in problem
solving? (NOt the actions it strings together, but the
actions it takes, like "trying short strings first", or
"assuming the block is where it's supposed to be".)

2. The notion that a semantic network is a network. In
lucid moments, network hackers realize that lines
drawn between nodes stand for pointers, that almost
everything in an AI program is a pointer, end that any
list structure could be drawn as a network, the choice
of what to call node and what to call link being
arbitrary. Their lucid moments are few.

3. The notion that a semantic network is semantic.
4. Any indulgence in the "procedural-declarative"

controversy. Anyone who hasn't figured this
"controversy" out yet should be considered to have
missed his chance, and be banned from talking about it.
Notice that at Carnegie-Mellon they haven't worried
too much about this dispute, and haven't suffered at all.
The first half of <Moore and Newell, 1974> has a list of
much better issues to think about.

5. The idea that because you can see your way through a
problem space, your program can: the "wishful control
structure" problem. The second half of <Moore and
Newell~ 1974> is a great example.

In this paper, I have criticized AI researchers very harshly.
Let me express my faith that people in other fields would, on
inspection, be found to suffer from equally bad faults. Most A!
workers are responsible people who are aware of the pitfalls of a
difficult field and produce good work in spite of them. However, to
say anything good about anyone is beyond the scope of this paper.

References

Bobrow, D. G. and A. M. Collins (1975) (eds) Representation and
Uaderstanding, New York: Academic Press.

Charniak, E. (1972) "Toward a Model of Children's Story
Comprehension", Cambridge: M]T A] Lab TR 266.

Dreyfus, H. L. (1972) What Computers Can't Do: A CrLtique of
Artific~l Re,on, New York: Harper & Row.

Ernst, G. W. and A. Newell (1969) GPS: A CoJe Study in Cenero.lity
and Problem-Soluing, New York: Academic Press.

Fahlman, S. (1975) "Thesis Progress Report: A System for
Representing and Using Real-World Knowledge", Cambridge:
MIT AI Lab Memo 331.

Goldstein, I. ([974) "Understanding • Simple Picture Programs",
Cambridge: MIT AI Lab TR 294.

Hawkinson, L. (1975) "The Representation of Concepts in OWL",
Cambridge: Project MAC Automatic Programming Group Internal
Memo 17.

Hewitt, C. (1972) "Description and Theoretical Analysis (Using
Schemata) of PLANNER: A Language for Proving Theorems and
Manipulating Models in a Robot", Cambridge: MIT AI Lab TR-
258.

Kenny, K. (1963) TriJ:i~ Began and the Mystery of the BUnkinff Eye,
Racine, Wisconsin: The Western Publishing Company, Inc.

Levin, M.I., J. McCarthy, P.W. Abrahams, O.J. Edwards, and
T. P. Hart (I965) LISP L5 Prograntnter's ntanuaL, (Second
edition) Cambridge: The M.I.T. Press.

LighthiII, J. (1973) "Artificial Intelligence: A General Survey", in
ArtiJ~,c~L /nteUigeace: a Paper Syntposi~znt, Science Researct~
Council

McDermott, D. (1974a)"Assimilation of New Information by a Natural
Language-Understanding System", Cambridge¢ M]T AI Lab TR
291.

McDermott, D. (19745) "Advice on the Fast-Paced World of
Electronics", Cambridge: MIT A! Lab Working Paper No. 71.

Minsky, M. (1968)Semantic Information Process~g, Cambridge: MIT
Press.

Moore, J. and A. Newell (1974) "How Can Merlin Understand?" in
Gregg, L. (ed.) Know&dEe and Cogn~tiott, Potomac, Maryland:
Lawrence Erlbaum Associates.

Nevins, A. (1974) "A Relaxation Approach to Splitting in an
Automatic Theorem Prover", Cambridge: M|T AI Lab Memo 302.

Newell, A. (t962) "Some Problems of Basic Organization in Problem-
Solving Programs", in Yovitts, M., G.T. Jacobi, and
G. D. Goldstein (eds.) SeLf-Or~cff~zDlg Systems--1962, New York:
Spartan.

Quillian, M. R. (1968) "Semantic Memory", in Minsky <1968>.
Quill[an, M. R. (1969) "The Teachable Language Comprehender",

Comm. ACM 12, p. 459.
Robinson, J. A. (1965) "A Machine-oriented Logic Based on the

Resolution Principle", JACM 12.
Stansfield, J. L. (1975) "Programming a Dialogue Teaching Situation",

unpublished Ph.D. thesis, University of Edinburgh.
Sussman, G.J. and D.V. McDormott (1972) "From PLANNER to

CONNIVER -- A Genetic Approach", (Prec. FJCC 41, p. 1171.
Sunguroff, A. (1975) Unpublished paper on the OWL system.
Sussman, G. J (1975) A Compttter Model of SkiLL Acqui.sLtion, New

York: American Elsevier.
Weizenbaum, J. (1975) Computer Power and H~nmn Reason, Win.

Freeman Company.
Winograd, T. (1971) "Procedures as a Representation for Data in a

Computer Program for Understanding Natural Language",
Cambridge: MIT AI Lab TR 84.

Winograd, T. (1975) "Frame Representations and the Declarative/
Procedural Controversy", in Bobrow and Collins <1975>.

Woods, W. A. (1975) "What's in a Link: Foundations for Semantic
Networks", in Bobrow and Collins <1975>.

SIGART Newsletter No. 57 April 1976 Page 9

