
34 Chapter 3: Using Classes and Objects

Chapter 3: Using Classes and Objects
Lab Exercises

Topics Lab Exercises
String Class Prelab Exercises

Working with Strings

Random Class Rolling Dice

Math Class Computing Distance

Formatting Classes Formatting Output

Enumerated Types Playing with Cards

Wrapper Classes Experimenting with the Integer Class

Panels Nested Panels

Chapter 3: Using Classes and Objects 35

Prelab Exercises
Sections 3.2-3.5

These exercises focus on the String, Random, and Math classes defined in the Java Standard Class Library. The main
concepts are in the text in sections 3.2-3.5. The goals of the lab are for you to gain experience with the following concepts:

• Declaring a variable to be a reference to an object—for example, the following declares the variable quotation to be a

reference to a String object:

 String quotation;

• Declaring a variable to be a reference to an object and creating the object (instantiating it) using the new operator—for

example,

 String quotation = new String("I think, therefore I am.");
 Random generator = new Random();

• Invoking a method to operate on an object using the dot operator—for example,

 quotation.length()

invokes the length method which returns the length of the quotation String or

 quotation.toLowerCase()

quotation except all letters are lower case. These invocations would be used in a program in a place appropriate for an
integer (in the first case) or a String (in the second case) such as an assignment statement or a println statement.

• Invoking static or class methods—these are methods that are invoked using the class name rather than an object name.

The methods in the Math class are static methods (basically because we don't need different instances of Math whereas
there are lots of different String objects). Examples are

Math.sqrt(2) (which returns the square root of 2)

and

Math.pow(3, 2) (which returns 32)

• Importing the appropriate packages—usually when you use classes from a library you need to put the import declaration

at the top of your program. The exception is for classes defined in the java.lang package (this includes String and Math)
which is automatically imported into every Java program.

36 Chapter 3: Using Classes and Objects

Exercises

1. Fill in the blanks in the program below as follows: (Section 3.2, especially the example in Listing 3.1, should be helpful):

(a) declare the variable town as a reference to a String object and initialize it to "Anytown, USA".
(b) write an assignment statement that invokes the length method of the string class to find the length of the college

String object and assigns the result to the stringLength variable
(c) complete the assignment statement so that change1 contains the same characters as college but all in upper case
(d) complete the assignment statement so that change2 is the same as change1 except all capital O's are replaced with

the asterisk (*) character.
(e) complete the assignment statement so that change3 is the concatenation of college and town (use the concat method

of the String class rather than the + operator)

// **
// StringPlay.java
//
// Play with String objects
// **
public class StringPlay
{
 public static void main (String[] args)
 {
 String college = new String ("PoDunk College");

 __; // part (a)

 int stringLength;
 String change1, change2, change3;

 __; // part (b)

 System.out.println (college + " contains " + stringLength + " characters.");

 change1 = __; // part (c)

 change2 = __; // part (d)

 change3 = __; // part (e)

 System.out.println ("The final string is " + change3);
 }
}

2. The following program should read in the lengths of two sides of a right triangle and compute the length of the

hypotenuse (recall that the length of the hypotenuse is the square root of side 1 squared plus side 2 squared). Complete it
by adding statements to read the input from the keyboard and to compute the length of the hypotenuse (you need to use a
Math class method for that).

Chapter 3: Using Classes and Objects 37

// ***
// RightTriangle.java
//
// Compute the length of the hypotenuse of a right triangle
// given the lengths of the sides
// ***
import java.util.Scanner;

public class RightTriangle
{
 public static void main (String[] args)
 {
 double side1, side2; // lengths of the sides of a right triangle
 double hypotenuse; // length of the hypotenuse

 Scanner scan = new Scanner(System.in);

 // Get the lengths of the sides as input
 System.out.print ("Please enter the lengths of the two sides of " +
 "a right triangle (separate by a blank space): ");

 ___;

 ___;

 // Compute the length of the hypotenuse

 ___;

 // Print the result
 System.out.println ("Length of the hypotenuse: " + hypotenuse);
 }
}

3. In many situations a program needs to generate a random number in a certain range. The Java Random class lets the

programmer create objects of type Random and use them to generate a stream of random numbers (one at a time). The
following declares the variable generator to be an object of type Random and instantiates it with the new operator.

 Random generator = new Random();

The generator object can be used to generate either integer or floating point random numbers using either the nextInt
method (either with no parameter or with a single integer parameter) or nextFloat (or nextDouble) methods,
respectively. The integer returned by nextIn(t could be any valid integer (positive or negative) whereas the number
returned by nextInt(n) is a random integer in the range 0 to n-1. The numbers returned by nextFloat() or nextDouble()
are floating point numbers between 0 and 1 (up to but not including the 1). Most often the goal of a program is to
generate a random integer in some particular range, say 30 to 99 (inclusive). There are several ways to do this:

• Using nextInt(): This way we must use the % operator to reduce the range of values—for example,

Math.abs(generator.nextInt()) % 70

will return numbers between 0 and 69 (because those are the only possible remainders when an integer is divided by
70 - note that the absolute value of the integer is first taken using the abs method from the Math class). In general,
using % N will give numbers in the range 0 to N - 1. Next the numbers must be shifted to the desired range by
adding the appropriate number. So, the expression

 Math.abs(generator.nextInt()) % 70 + 30

will generate numbers between 30 and 99.

38 Chapter 3: Using Classes and Objects

• Using nextInt(70): The expression

generator.nextInt(70)

will return numbers between 0 and 69 (inclusive). Next the numbers must be shifted to the desired range by adding
the appropriate number. So, the expression

 generator.nextInt(70) + 30

will generate numbers between 30 and 99.

• Using nextFloat: In this case, we must multiply the result of nextFloat to expand the range—for example,

generator.nextFloat() * 70

returns a floating point number between 0 and 70 (up to but not including 70). To get the integer part of the number
we use the cast operator:

(int) (generator.nextFloat() * 70)

The result of this is an integer between 0 and 69, so

(int) (generator.nextFloat() * 70) + 30

shifts the numbers by 30 resulting in numbers between 30 and 99.

The method nextFloat can be replaced by nextDouble to get double precision floating point numbers rather than
single precision.

Fill in the blanks in the following program to generate the random numbers as described in the documentation. NOTE
that that java.util.Random must be imported to use the Random class.

// **
// LuckyNumbers.java
//
// To generate three random "lucky" numbers
// **

import java.util.Random;

public class LuckyNumbers
{
 public static void main (String[] args)
 {
 Random generator = new Random();
 int lucky1, lucky2, lucky3;

 // Generate lucky1 (a random integer between 50 and 79) using the
 // nextInt method (with no parameter)

 lucky1 = __;

 // Generate lucky2 (a random integer between 90 and 100) using the
 // nextInt method with an integer parameter

 lucky2 = __;

Chapter 3: Using Classes and Objects 39

 // Generate lucky3 (a random integer between 11 and 30) using nextFloat

 lucky3 = __;

 System.out.println ("Your lucky numbers are " + lucky1 + ", " + lucky2
 + ", and " + lucky3);
 }
}

40 Chapter 3: Using Classes and Objects

Working with Strings

The following program illustrates the use of some of the methods in the String class. Study the program to see what it is
doing.

// ***
// StringManips.java
//
// Test several methods for manipulating String objects
// ***

import java.util.Scanner;

public class StringManips
{
 public static void main (String[] args)
 {
 String phrase = new String ("This is a String test.");
 int phraseLength; // number of characters in the phrase String
 int middleIndex; // index of the middle character in the String
 String firstHalf; // first half of the phrase String
 String secondHalf; // second half of the phrase String
 String switchedPhrase; // a new phrase with original halves switched

 // compute the length and middle index of the phrase
 phraseLength = phrase.length();
 middleIndex = phraseLength / 2;

 // get the substring for each half of the phrase
 firstHalf = phrase.substring(0,middleIndex);
 secondHalf = phrase.substring(middleIndex, phraseLength);

 // concatenate the firstHalf at the end of the secondHalf
 switchedPhrase = secondHalf.concat(firstHalf);

 // print information about the phrase
 System.out.println();
 System.out.println ("Original phrase: " + phrase);
 System.out.println ("Length of the phrase: " + phraseLength +
 " characters");
 System.out.println ("Index of the middle: " + middleIndex);
 System.out.println ("Character at the middle index: " +
 phrase.charAt(middleIndex));
 System.out.println ("Switched phrase: " + switchedPhrase);

 System.out.println();
 }
}

The file StringManips.java contains this program. Save the file to your directory and compile and run it. Study the output and
make sure you understand the relationship between the code and what is printed. Now modify the file as follows:

1. Declare a variable of type String named middle3 (put your declaration with the other declarations near the top of the

program) and use an assignment statement and the substring method to assign middle3 the substring consisting of the
middle three characters of phrase (the character at the middle index together with the character to the left of that and the
one to the right – use variables, not the literal indices for this particular string). Add a println statement to print out the
result. Save, compile, and run to test what you have done so far.

Chapter 3: Using Classes and Objects 41

2. Add an assignment statement to replace all blank characters in switchedPhrase with an asterisk (*). The result should be
stored back in switchedPhrase (so switchedPhrase is actually changed). (Do not add another print—place your statement
in the program so that this new value of switchedPhrase will be the one printed in the current println statement.) Save,
compile, and run your program.

3. Declare two new variables city and state of type String. Add statements to the program to prompt the user to enter their

hometown—the city and the state. Read in the results using the appropriate Scanner class method – you will need to have
the user enter city and state on separate lines. Then using String class methods create and print a new string that consists
of the state name (all in uppercase letters) followed by the city name (all in lowercase letters) followed again by the state
name (uppercase). So, if the user enters Lilesville for the city and North Carolina for the state, the program should create
and print the string

 NORTH CAROLINAlilesvilleNORTH CAROLINA

42 Chapter 3: Using Classes and Objects

Rolling Dice

Write a complete Java program that simulates the rolling of a pair of dice. For each die in the pair, the program should
generate a random number between 1 and 6 (inclusive). It should print out the result of the roll for each die and the total roll
(the sum of the two dice), all appropriately labeled. You must use the Random class. The RandomNumbers program in listing
3.2 of the text may be helpful.

Chapter 3: Using Classes and Objects 43

Computing Distance

The file Distance.java contains an incomplete program to compute the distance between two points. Recall that the distance
between the two points (x1, y1) and (x2, y2) is computed by taking the square root of the quantity (x1 – x2)2 + (y1 – y2) 2.
The program already has code to get the two points as input. You need to add an assignment statement to compute the
distance and then a print statement to print it out (appropriately labeled). Test your program using the following data: The
distance between the points (3, 17) and (8, 10) is 8.6023... (lots more digits printed); the distance between (–33, 49) and (–9,
–15) is 68.352.…

// ***
// Distance.java
//
// Computes the distance between two points
// ***

import java.util.Scanner;

public class Distance
{
 public static void main (String[] args)
 {
 double x1, y1, x2, y2; // coordinates of two points
 double distance; // distance between the points

 Scanner scan = new Scanner(System.in);

 // Read in the two points
 System.out.print ("Enter the coordinates of the first point " +
 "(put a space between them): ");
 x1 = scan.nextDouble();
 y1 = scan.nextDouble();

 System.out.print ("Enter the coordinates of the second point: ");
 x2 = scan.nextDouble();
 y2 = scan.nextDouble();

 // Compute the distance

 // Print out the answer

 }
}

44 Chapter 3: Using Classes and Objects

Formatting Output

File Deli.java contains a partial program that computes the cost of buying an item at the deli. Save the program to your
directory and do the following:

1. Study the program to understand what it does.

2. Add the import statements to import the DecimalFormat and NumberFormat classes.

3. Add the statement to declare money to be a NumberFormat object as specified in the comment.

4. Add the statement to declare fmt to be a DecimalFormat object as specified in the comment.

5. Add the statements to print a label in the following format (the numbers in the example output are correct for input

of $4.25 per pound and 41 ounces). Use the formatting object money to print the unit price and total price and the
formatting object fmt to print the weight to 2 decimal places.

 ***** CS Deli *****

 Unit Price: $4.25 per pound
 Weight: 2.56 pounds

 TOTAL: $10.89

Chapter 3: Using Classes and Objects 45

// **
// DeliFormat.java
//
// Computes the price of a deli item given the weight
// (in ounces) and price per pound -- prints a label,
// nicely formatted, for the item.
//
// **

import java.util.Scanner;

public class Deli
{
 // ---
 // main reads in the price per pound of a deli item
 // and number of ounces of a deli item then computes
 // the total price and prints a "label" for the item
 // --

 public static void main (String[] args)
 {
 final double OUNCES_PER_POUND = 16.0;

 double pricePerPound; // price per pound
 double weightOunces; // weight in ounces
 double weight; // weight in pounds
 double totalPrice; // total price for the item

 Scanner scan = new Scanner(System.in);

 // Declare money as a NumberFormat object and use the
 // getCurrencyInstance method to assign it a value

 // Declare fmt as a DecimalFormat object and instantiate
 // it to format numbers with at least one digit to the left of the
 // decimal and the fractional part rounded to two digits.

 // prompt the user and read in each input
 System.out.println ("Welcome to the CS Deli!!\n ");

 System.out.print ("Enter the price per pound of your item: ");
 pricePerPound = scan.nextDouble();

 System.out.print ("Enter the weight (ounces): ");
 weightOunces = scan.nextDouble();

 // Convert ounces to pounds and compute the total price
 weight = weightOunces / OUNCES_PER_POUND;
 totalPrice = pricePerPound * weight;

 // Print the label using the formatting objects
 // fmt for the weight in pounds and money for the prices

 }
}

46 Chapter 3: Using Classes and Objects

Playing With Cards

Write a class that defines an enumerated type named Rank with values ace, two, three, four, five, six,
seven, eight, nine, ten, jack, queen, king. The main method
should do the following:

1. Declare variables highCard, faceCard, card1, and card2 of type Rank.

2. Assign highCard to be an ace, faceCard to be a jack, queen or king (your choice), and card1 and card2 to be two

different numbered cards (two through ten - your choice).

3. Print a line, using the highCard and faceCard objects, in the following format:

A blackjack hand: ace and

The faceCard variable should be printed instead of the dots.

4. Declare two variables card1Val and card2Val of type int and assign them the face value of your card1 and card2

objects. Use your card1 and card2 variables and the ordinal method associated with enumerated types. Remember
that the face value of two is 2, three is 3, and so on so you need to make a slight adjustment to the ordinal value of
the enumerated type.

5. Print two lines, using the card1 and card2 objects and the name method, as follows:

 A two card hand: (print card1 and card2)
 Hand value: (print the sum of the face values of the two cards)

Chapter 3: Using Classes and Objects 47

Experimenting with the Integer Class

Wrapper classes are described on pages 138-140 of the text. They are Java classes that allow a value of a primitive type to be
"wrapped up" into an object, which is sometimes a useful thing to do. They also often provide useful methods for
manipulating the associated type. Wrapper classes exist for each of the primitive types: boolean, char, float, double, int, long,
short, and byte.

Write a program IntWrapper that uses the constants and methods of the Integer class (page 140 for a short list, pages 819-820
for a complete list) to perform the following tasks. Be sure to clearly label your output and test your code for each task before
proceding.

1. Prompt for and read in an integer, then print the binary, octal and hexadecimal representations of that integer.

2. Print the maximum and minimum possible Java integer values. Use the constants in the Integer class that hold these
values -- don't type in the numbers themselves. Note that these constants are static (see the description on page 140
and the signature on page 819).

3. Prompt the user to enter two decimal integers, one per line. Use the next method of the Scanner class to read each of

them in. (The next method returns a String so you need to store the values read in String variables, which may seem
strange.) Now convert the strings to ints (use the appropriate method of the Integer class to do this), add them
together, and print the sum.

48 Chapter 3: Using Classes and Objects

Nested Panels

The program NestedPanels.java is from Listing 3.8 of the text. Save the program to your directory and do the following:

1. Compile and run the program. Experiment with resizing the frame and observe the effect on the components.
2. Modify the program by adding a third subpanel that is twice as wide, but the same height, as the other two

subpanels. Choose your own label and color for the subpanel (the color should not be red, green, or blue). Add the
panel to the primary panel after the other two panels.

3. Compile and run the modified program. Again, experiment with resizing the frame and observe the effect on the
components.

4. Now add a statement to the program to set the preferred size of the primary panel to 320 by 260. (What would be the
purpose of this?). Compile and run the program to see if anything changed.

5. Now add another panel with background color blue and size 320 by 20. Add a "My Panels" label to this panel and
then add this panel to the primary panel before adding the other panels. Compile and run the program. What was the
effect of this panel?

//**
// NestedPanels.java Author: Lewis/Loftus
//
// Demonstrates a basic component hierarchy.
//**
import java.awt.*;
import javax.swing.*;

public class NestedPanels
{
 //---
 // Presents two colored panels nested within a third.
 //---
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Nested Panels");
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 // Set up first subpanel
 JPanel subPanel1 = new JPanel();
 subPanel1.setPreferredSize (new Dimension(150, 100));
 subPanel1.setBackground (Color.green);
 JLabel label1 = new JLabel ("One");
 subPanel1.add (label1);

 // Set up second subpanel
 JPanel subPanel2 = new JPanel();
 subPanel2.setPreferredSize (new Dimension(150, 100));
 subPanel2.setBackground (Color.red);
 JLabel label2 = new JLabel ("Two");
 subPanel2.add (label2);

 // Set up primary panel
 JPanel primary = new JPanel();
 primary.setBackground (Color.blue);
 primary.add (subPanel1);
 primary.add (subPanel2);

 frame.getContentPane().add(primary);
 frame.pack();
 frame.setVisible(true);
 }
}

