
Pavel kazatsker
CPRE 585 X Project Proposal

Introduction

Self-detection and the concept of the self have been a sizeable research area in the field
of developmental robotics. Research has shown that self-detection is essential functionality for
tool use in intelligent biological beings. It is, therefore, necessary to examine mathematical
representations of self-other separation so that self-detection can be better implemented in
robots.

A necessary step for this is implementation of self-other separation and simple tool use
in an artificial environment. The simplification of the environment creates the possibility for a
simple task with clear-cut objectives to be added on top of the task of self-other separation.

Basic Idea

The basic idea I’d like to demonstrate is that self-detection is a major step towards
solving a simple task. That is, given a very simple algorithm and some self-detection
functionality, a robot can perform a seemingly sizeable task like playing a game. The only
instructions explicitly give to the robot is that the objective of the game is to chase objects
around the screen.

This experience as a whole is very similar to that experienced by people when they play
games or even use any type of machine. When a person picks up a game, the first thing he’ll
do is wiggle the control or press buttons to see how the screen reacts. Furthermore, there’s a
common personal experience where interfaces make it hard to distinguish the part of the
interface the user controls. In those cases, the software is very difficult to use effectively.

Related Work

A number of previous papers have been written on the subject of Self-Detection.
Research has shown that the ability to identify the self and proprioceptive effects in the visual
field are an ability that is unique to humans and great apes (Gallup, 1970). This indicates that
this skill is, to some extent, necessary for a more advanced understanding of intelligence.

There have been previous discussion of the use of video games to illustrate the use of
learning methodology. Generally, games are used to teach information the place of a traditional
classroom setting (Shaffer, 2005). Our use for these games is somewhat different, however.
Although we are using the game as a simplification of the real world in the use of learning, we
are using games to teach physical coordination instead of facts from a classroom. There
doesn’t seem to be literature discussing the use of video games to teach coordination.

The last set of relevant papers are those dealing specifically with self-detection in robots.
The most popular approach for self-detection seems is a measurement of the delay between
action and reaction in the robot’s perception (Gold et. al. 2004). This general idea will ideally be
maintained in this project but the exact previous measurements involved with self-other
separation seem incompatible with with the scenario of the games.

Equipment

With the exception of the physical robotic platform, the equipment used for this study is
largely readily available and easily affordable. The robot platform is an upper torso humanoid

torso with Barrett arms and hands. Only the left arm
of the robot is going to be used to control the game.
The robot’s hands are equipped with touch sensors
and vibrotactile sensors but neither of those
modalities are necessary for this study. Of the
modalities that are native to the arms and hands, the
only one used will be proprioception.

The robot’s head is equipped with two
commercially available webcams. Only one of these
webcams will be used. In order to get decent visual
data, the webcam should be able to take in images
at at least 15 frames per second and 640 X 480
resolution.

A commercially available joystick will be use to actually play the games.
The joystick chosen was a microsoft sidwinder joystick. The major parameters
considered were the size of the joystick and the width of the base. The size of
the joystick is important as the robot lacks the ability to grasp small objects.
The base has to be sufficiently large so that it can secured to the table.

The Television selected
for this project is also
commercially available and
doesn’t have any special
equipment unique to this

project. The only relevant parameter is that the
television has to be sufficiently large to take up
the majority of the webcam’s visual field.

When all the stuff is put together it looks a little
goofy with both the television and the joystick
really close to the robot. The proximity of the
joystick to the robot is necessary in order to get
the full functionality out of the joystick within the
joint-space of the robot. Similarly, the proximity
of the television is intended to get as much
resolution as possible our of the combination
television and webcam.

The upper torso humanoid robot is quipped
with two arms and two webcams but only one
of each will be used in this study.

The controller
used with be a
commercially
available
microfost
sidewinder
joystick

A large Television will be used to display the games.

All the equipment together

Games

This project was first introduced as teaching the robot to play Pong. This was, however,
seen as too singular of a task for an entire study and was, therefore, extended to include two
additional tasks.

Pong was credited as being one of the first
arcade video games in the early 1970s. The
game was meant as a tennis simulator. Each
player controlled a dial that moved the paddle
along a vertical axis on either side of the screen.
The objective was to continuously deflect the ball
away from your side and to keep it from getting
passed the paddle. The original game was quite
simple and just featured the ball bouncing
between the two paddles. The trajectory of the
ball after a collision with the paddle would depend
on where the ball hit the paddle. The closer the
collision was to the paddle’s corner, the more
extreme the return angle would be.

Pong eventually inspired a similar game
where the paddle would, instead, move along the
horizontal axis and had to deflect the ball at
colored bricks that are situated opposite the paddle. The original version of this game was
developed in 1976 and called breakout. The game featured virtually identical controls with a
small dial that controlled the motion of the paddle on the screen. As this was later, the game
looked a little bit more modern with notably higher definition textures and a number of colors.
Countless breakout clones were made with better graphics, additional features, and unique
themes to each game. Among the more popular clones was a game called Arkanoid that came
out in the 1980s.

The classic games could not be used for a variety of reasons. The original games used
a small dial to control the paddles. This was not seen as an effective mode of control as the
robot could not effectively manipulate a small dial. Furthermore, randomly learning to
manipulate dial would not be feasible for this task.

A screenshot of hte original Pong game. The
game had very simple graphics and no color. A
player controlled each of the paddles and a
score was maintained to keep track of how many
times the ball got passed your opponent.

The games also have a number of visual
elements that make it hard to use them for my
purposes. The original games were very simple
and had rather low resolution elements. The
visual model used in this project requires that
graphical elements have discernable textures and
are somewhat large. Furthermore, images taken
against a black background are prone to heavy
reflections which further throw off the visual
model.

A new version of these games was,
therefore, made to better accommodate the needs
of the needs of this project. The control problem
was fixed by creating versions of the game where
the paddles’ positions are manipulated by moving
a joystick. The new versions of the games will
have much larger in-game sprites with colored
textures. The background in the modified games
will also be white to manage the problem with the reflections in the game. Lastly, the movement
of the paddles in the games is going to have to be modified away from what is traditionally
experienced in those game. Many of the games have the joystick control the velocity of paddle
whereas these version would control the location of the game directly.

These two well-established games both
have the rather prohibitive limitation of having the
player sprite move along a single axis. This is not,
however, an assumption of the system so a third
game will be introduced in order to demonstrate
that this system can handle a player that moves in
two dimensions. This game will feature a simple
(square) player sprite and a target that the player
is supposed to hit using joystick controls. In order
to keep the algorithm working with the same
instructions, The target will be a simple object
moving in some small and predictable manner.
This is necessary to maintain the distinction
between the object that should be identified as
“other” and the background that's present in all
three games.

Learning Process

The robot will have no foreknowledge of the task at each run of the process. The robot
will gain a concept of itself within the game and, therefore, the knowledge of how to play the
game each at each activation of this process. This is somewhat in line with findings in biological
learning environments.

The original game of breakout had low resolution
textures but introduced a number of simple
colors. This game was played single-player and
the objective was to hit all the bricks on the
screen without letting the ball get passed the
paddle.

A modern open-source version of Pong. Color
was once again absent from the game but the
higher resolution is evident

The first thing that happens at each activation is that the robot undergoes pre-
programmed motions to graps the joystick. There is substantial research involved in grasping
and learning to grasp objects but that is outside the scope of this research. The grasping will be
treated as a given so that the focus of the experiments will be focused on motion and detection.

Once the robot has the joystick in hand, it will explore the functional area of the joystick.
The functional area is defined as anywhere the robot can move while holding the joystick
without exceeding predefined torque limits. In order to find the geometric limits of this functional
area, the robot will move the arm in eight directions until the predefined torque limits are
reached. The robot will then store the locations where the torque limits were reached and the
convex hull surrounding all those points in considered the functional area of the joystick.

The real process begins with the robot randomly babbling around this defined functional
area. At each movement, the robot will observe the screen and at this point attempt to
determine what part of the screen it controls and what effect each type of movement has on the
game. The number of movements required during this phase is among the results that this
experiment will idea produce. The only requirement for this babbling phase is that the robot
must gain all the information from this phase in a short period of time (less than fifteen minutes).

Once the robot has completed the babbling phase, the game will start. The robot will
then have to use previously gained information to determine what part of the game it control and
how to chase down the ball. At this point, the self-other separation will be, somewhat, tested.
There will actually be an object that should be classified as other during the course of the game.
At each time step, the robot will run through a subset of the motor commands memorized during
the babbling phase and perform the one that most closely brings the “self” object to the “other”
object.

This algorithm will be used on all the games. In two of the games, the motion of the
player sprite is confined to a single axis. This is not explicitly assumed or refuted by
assumptions given to the robot. The robot will be programmed to move the “self” sprite as close
as possible to the “other” sprite. In those cases, the locations where the self is closest to the
other is the one in which the paddle will properly block the ball.

Assumptions

There are various assumptions that are required to simplify some of the real-world
complexities involved in playing these games. A number of these assumptions are introduced
to restrict the scope of the study to something manageable. As mentioned before, the robot will
start with the Joystick in hand. Although the thought of finding and successfully grasping the
joystick is academically interesting and challenging, its simply not seen as a relevant part of this
project.

The other item that was scoped out of the project was the idea of the robot learning to
play the game. game play has historically been among the largest research area in artificial
intelligence as a field. All concepts of scoring and game performance are, therefore removed
from the robot side of the algorithm. The objective of intercepting the ball is, therefore,
programmed directly into the algorithm. An alternative to this methodology was to program the
physics of the game into the game playing part of the algorithm and have it accurately predict
toe trajectory of the ball. This idea was ultimately rejected as involves programming actual
game rules into a learning agent and would add an unnecessary complication into the system.

Other assumptions were introduced to simplify some of the individual subsystem and
make them more manageable. Some of these assumptions are somewhat natural to the setup
while others tend to be somewhat more counter-intuitive.

The visual model used for this project works under the assumption that only moving
objects need to be tracked and that the tracked objects will move in directions that are normal to
the robot’s field of vision. On the one hand, this is somewhat natural as these games are
intended to be played with the screen upright and with the objects moving along the plane of the
screen as is customary in two-dimensional games. This does, however, serve as a substantial
simplification that is assumed by the vision algorithms employed in this project. In theory, there
is nothing to prevent the sprites in the game from moving in three dimensions. The apparently
changing shapes and sizes of the objects would throw off the vision tracking software
implemented.

The least intuitive simplification that implemented for this project is the postiion-based
controls that are implemented for the games. This was done as a number of events that are
likely to be identified as robot-introduced events would, in fact, be created by the nature of the
game. A velocity-based control scheme would require a self-other separation scheme that
registers temporal events based on the changes in velocity. Such a scheme would be thrown
off by false events that are introduced by the game itself. Consider, for example, the very
common situation of the paddle hitting the side of the wall and stopping. This would register as
an event that would likely be expected to be generated from the robot. This misinformation
would create additional difficulty in separating the self from the other in the game.

This assumption does scale back to the overall goal of self-other separation in the real
world. The assumption that objects on the screen move directly with motion in the real world
makes sense in the context of the real world after the television component is removed. Simply
put, its more natural to assume that the things you’re looking for are going to move with direct
correlation with the movements imposed on them as opposed to your movements creating a
change in velocity.

Another somewhat unnatural assumption is that the robot will have a babbling period
where the only moving objects in the robot’s visual field are those controlled directly by the
robot. These types of games generally don’t have game modes in which they get to practice
moving around the functional area. This is, however, more consistent with the human
developmental people. People have many years to develop their coordination before any form
of test is imposed on their reaction.

Vision Tracking Model

The vision model alluded to in his proposal is based on a paper from the University of
Massachusetts Amherst. The paper discussed partitioning objects into a visual field into the
various rigid components. This same methodology will be used to extract the individual objects
in the visual field of the robot when its trying to play the games.

In short, the visual model uses a functionality already present in the OpenCV the open
computer vision library to find features in an image. The features are then tracked from a given
frame to the next. Given the assumption that relevant motion is all normal to the vision of the
robot, the features of the rigid components will should maintain a constant distance from each
other. The features that maintain a constant distance are, therefore, grouped together and

maintained as unique components. These components are then measured and each maintain
an identity as being self or other.

Here is the basic psuedocode that was implemented to paritition the rigid components in
the visual field as well as get their delays for each movement.

Process Actuator (robot):
1. time1 = time();
2. move and wait
3. shared_stoptime = time();
4. shared_startime = time1;
5. wait for command
6. goto 1

subroutine Sensor(components);
1. get frame
2. if not first frame
3. update components
4. for each components Ci

5. if Ci is moving
6. if shared_startime + START_DELAY ≤ time() ≤ shared_stop + STOP_DELAY
7. mark CI self
8. else mark Ci other
9. if Ci self marks / Ci total marks > .75
10. consider Ci as self
11. else consider Ci as other

Process Controller
1. arrLoc[NUM_MOVEMENTS], arrJoint
2. Components = {}
3. for i = 1 to NUM_MOVEMENTS ;babbling phase
4. issue movement command
5. sensor(components)
6. arr[i] = average of “self” component locations
7. arrJoint[i] = joint angles
8. sensor(components)
9. index i = indexOf(minimum distance between average “other” components and arr[index])
10. moveto arrJoint[i];
11. goto 8

Evaluation

This project will have a variety of evaluation criteria at each of the steps of the project.
The first thing that will likely need to be evaluated is the performance of the visual model in light
of the various circumstances introduced by this project. The visual model Is quite essential as it
is a dependency of pretty much each other module in the rest of the project. Experience has
shown that the most essential criteria for the visual model is its ability yo maintain consistent
identities for given components over longer periods of time. At the conclusion of the project, the
visual model will be evaluated given the simple measure of how long the main components (the
primary ones representing the ball and the paddle) can keep their identities from the time they're

first identified. Since there is a substantial amount of noise introduced by the television as well
as other factors. The existence of small, fleeting features that go away after only a few frames
doesn't really matter and will not reflect poorly on the visual model.

The ultimate success of the project will be judged by the success of robot agent in its
consistency when playing the various games. The main output is meant to be the ability to play
Pong. There will be multiple testing criteria in the testing of the Pong game. The simplest one
is a subject test against a human opponent. Player can come in and judge the robot's playing
ability by its ability to keep the ball in play and, perhaps maintain a lead. The ability to win is
not, however, necessary for the success of the project, and any agent that can even put up a
fight will be seen as a success in the grand scheme of the project.

Other potential criteria are somewhat more objective. Counting the number of
consecutive times the ball is kept in play by the robot against a perfect opponent is a telling
measure of how well the robot can perform given this algorithm. The nature of the game allows
for a decent amount of variability within this measure. The opponent is capable of effecting the
difficulty of the game by hitting the ball at various angles. I will, therefore, create a performance
measure with opponents with two different play style. The first opponent will always attempt to
hit the ball back with a horizontal trajectory while the other one will hit the ball within a random
location making it more difficult to follow the ball. Obviously, its expected that the robot will
perform better in the situation where the opponent always hits the ball back straight.

The performance in the breakout game will be similarly evaluated. The objective is to be
--as consistent as possible so the result will be evaluated by the number of consistent hits the
player agent has before the agent fails to return the ball. This is somewhat counter-intuitive as
the true objective of these games is to clear all the bricks. The notion of bricks is not, however,
explicitly programmed into the robot or presented to the robot in any way. Bricks are, therefore,
a purely incidental element that does not explicitly effect player performance.

The objective for the third game will be measured somewhat differently. Since there is
no concept of hitting or missing a ball on the screen, the performance in the game will,instead
be evaluated on how long it takes the player agent to reach its target at each run.

For all of these games, ther performance of the agent Is supposed to improve over time.
Some measurement will be taken into account to measure how much the performance of the
changes as time goes on. The perceived effect of the joystick will be updated as time goes on.
If these updates are performed correctly, the expectations of the robot will likely become more
accurate as time goes on. Furthermore, the notion of the “self” versus the “other” is likely to
grow stronger with the progression of time. The perceived probability that the paddle is “self”
and the ball is “other” should grow and converge as time goes on. This will be seen as another
success measure of the system.

Project progression

This project is naturally prone to a modular design and is likely too large to undertake in
one step. It, therefore, made sense to do one step at time and produce a deliverable at each
step. The first step of the project was the development of the visual model, and test it’s viability
with self-other separation on a previously explored dataset. The results produced from looking
a the real world dataset from Dr. Alexander Stoytchev’s dissertation had promising results
showing that the visual model was viable for this purpose, at least for self-other separation in
the real world.

The first step after the introduction of the game component was attempting to find an
effective scheme to control the joystick. This was an imperfect process as a method was
required that was both sufficiently random and effective in exploring most of the functional area
of the joystick in a reasonable amount of random movements. Once this was done, it was
hooked up to a sample game to make sure that technique was effective.

Once this was done, the two
elements were combined with a large
number of elements to fill in the blanks.
The original implementation for this was
done for a game called SDL ball that was
implemented for linux in openGL. For this
version of the project, the robot did not
have to look off of a tv screen making it
unnecessary to implement all the changes
discussed above. Instead of a TV, the
game was piped directly into memory
shared between the game and the vision
code.

This iteration of the game was
seen as insufficient for a number of
reasons. First of all, memory shared
between the game and the self-other
separation code could easily “cheat” and
simply pipe “self” and “other” positions directly into shared memory and completely skip all the
relevant parts of the process. To a somewhat lesser extent, The positions of objects could be
sent into the self-other separation code bypassing the detection code entirely.

That state of the project was demonstrated at CPRE open lab night November 11, 2010.
Shared memory was used to pipe images directly into the vision code but a television was
displayed while the robot was playing in order to show the robot’s perception and progress.

The introduction of the television added a new set of milestones to be met. First of all,
the original OpenGL-based game no longer met game requirements for effective tracking
through a TV. An image tracked on a tv would have to have large and textured sprite so that
they can be distinguished in a relatively noisy image. The new game underwent a number of
tracking simulations before it was used in conjunction with a TV and the webcams. Quick
testing revealed that an image with a white background would minimize reflections and make
this whole process more feasible.

The final step in the game is ideally to play the game with the robot staring a television
and controlling the game.

Sources

1.Gallup, G. G. J. Chimpanzees: self-recognition. Science, 167(3914):86–7, Jan. 2 1970.

2.Shaffer, D. W., Squire, K. D., Halverson, R., & Gee, J. P. (2005). Video
games and the future of learning. Phi Delta Kappan, 87(2), 104–111.

A simplfiied version of an open-source breakout game
called SDL ball was used for the demo during open lab
night

3.Michel, P., Gold, K., & Scassellati, B. (2004). Motion-based
robotic self-recognition. Presented at the 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems.

