
IEEE Symposium on FPGAs for Custom Computing Machines, 1997.

The Chimaera Reconfigurable Functional Unit
Scott Hauck, Thomas W. Fry, Matthew M. Hosler, Jeffrey P. Kao

Department of Electrical and Computer Engineering
Northwestern University

Evanston, IL 60208-3118 USA
{hauck, zaphod, mhosler, theta}@ece.nwu.edu

Abstract

By strictly separating reconfigurable logic from
their host processor, current custom computing
systems suffer from a significant communication
bottleneck. In this paper we describe Chimaera, a
system that overcomes this bottleneck by
integrating reconfigurable logic into the host
processor itself. With direct access to the host
processor’s register file, the system enables the
creation of multi-operand instruction and a
speculative execution model key to high
performance, general-purpose reconfigurable
computing. It also supports multi-output
functions, and utilizes partial run-time
reconfiguration to reduce reconfiguration time.
Combined, this system can provide speedups of a
factor of two or more for general-purpose
computing, and speedups of 160 or more are
possible for hand-mapped applications.

Introduction
By adapting to computations not well served by current
processor architectures, reconfigurable systems have
provided significant performance improvements. These
adaptive computing systems develop custom logic
implementations of computation kernels, accelerating
processing. However, purely FPGA-based systems are
usually unsuitable for complete algorithm implementation.
In most computations there is a large amount of code that is
executed relatively rarely, and attempting to map all of
these functions into reprogrammable logic would be very
logic-inefficient. Also, reconfigurable logic is much slower
than a processor’s built-in functional units for standard
computations such as floating point and complex integer
arithmetic, variable length shifts, and others. The solution
to this dilemma is to combine the advantages of both
microprocessor and FPGA resources into a single system.
The microprocessor is used to support the bulk of the
functionality required to implement an algorithm, while the
reconfigurable logic is used to accelerate only the most
critical computation kernels of the program.

Most current mixed processor-FPGA systems suffer from a
communication bottleneck between the processor and the
reconfigurable logic [Hauck95]. By placing the

reconfigurable logic in a separate chip from the processor,
the limited off-chip bandwidth and added delay interfere in
efficient FPGA-processor communication. The resulting
overhead requires that large chunks of the application code
must be mapped to the reconfigurable logic to achieve any
performance benefits at all. This means that relatively few
applications can benefit from current adaptive systems, and
they must be hand-mapped in order to achieve high enough
performance benefits to justify the hardware costs and extra
complexities. All of these factors keep reconfigurable
computing from entering the mainstream, and drive up the
cost and complexity of these systems.

There has been initial work done on integrating processors
and reconfigurable logic [French93, Albaharna94,
DeHon94, Razdan94a, Razdan94b, Albaharna96,
Rajamani96, Wirthlin95, Wittig96]. However, these
systems in general use standard FPGA architectures,
architectures that have not been designed to effectively
support the needs of integrated FPGA-processor systems.
Also, as we will show, there are significant opportunities
for optimizing these systems by taking advantage of the
tight coupling of processor and reconfigurable logic. In this
paper we describe Chimaera, a hardware system consisting
of a microprocessor with an integrated reconfigurable
functional unit being developed at Northwestern University.

The Chimaera Execution Model

The primary strength of a reconfigurable coprocessor
(RCP) or functional unit (RFU) is the ability to customize
the hardware to a specific program’s requirements. Thus,
when a communications program is active the
reconfigurable logic might contain data compression and
decompression routines, while when a rendering package is
running the reconfigurable logic would be switched to
support graphics operations. A more complex application,
such as a complete word processing application, might have
different mappings to the reconfigurable logic for different
sections of the code, with text search routines active in one
phase of the code’s operation, and postscript acceleration
routines for another. While these operations may not
provide as big a performance improvement as custom
hardware due to the inevitable overheads inherent in
reconfigurable logic, by being able to accelerate most or all

2

applications running on a system they provide performance
gains for a much larger class of problems.

In order to efficiently support these demands, the Chimaera
system treats the reconfigurable logic not as a fixed
resource, but instead as a cache for RFU instructions.
Those instructions that have recently been executed, or that
we can otherwise predict might be needed soon, are kept in
the reconfigurable logic. If another instruction is required,
it is brought into the RFU, overwriting one or more of the
currently loaded instructions. In this way, the system uses
partial run-time reconfiguration techniques to manage the
reconfigurable logic. This does require that the
reconfigurable logic be somewhat symmetric, so that a
given instruction can be placed into the RFU wherever
there is available logic. Also, some FPGAs have forbidden
configurations (such as multiple active drivers to the same
shared routing resource) which can mean that intermediate
states accidentally reached during reconfiguration can
destroy the chip. As described later in this paper, the
Chimaera system deals with this by using an architecture
with no forbidden states, employing hardware support to
avoid these problems. This also has the desirable side-
effect that a faulty configuration generated by the run-time
system will not destroy the processor.

In order to use instructions in the RFU, the application code
includes calls to the RFU, and the corresponding RFU
mappings are contained in the instruction segment of that
application. The RFU calls are made by special
instructions which tell the processor to execute an RFU
instruction. As part of this RFU call an instruction ID is
specified which determines which specific instruction
should be executed. If that instruction is present in the
RFU, the result of that instruction is written to the
destination register (also contained in the RFU call) during
the instruction’s writeback cycle. In this way, the RFU
calls act just like any other instruction, fitting into the
processor’s standard execution pipeline. If the requested
instruction is not currently loaded into the RFU, the host
processor is stalled while the RFU fetches the instruction
from memory and properly reconfigures itself. Note that
this reconfiguration time can be quite significant. Thus,
care must be taken to avoid constant reloading of the RFU.
We are currently investigating techniques such as
prefetching, caching algorithms, and caching hierarchies to
avoid or reduce these reconfiguration penalties.

Normal instructions in the host processor not only specify
the instruction to be performed and the destination for the
result, but they also specify up to two source registers for
the operands of the instruction. We could use a similar
scheme for the RFU instructions as well. However, this
would mean that the RFU would have exactly one cycle
(the instruction’s execute cycle) to compute its function,

since the operands are fetched in the previous cycle, and
written back to the registers in the next cycle. Also, this
would limit the RFU to having only two source operands,
limiting the complexity of the computations. In Chimaera,
we have chosen another approach. As shown in Figure 1,
the reconfigurable logic is given direct read access to a
subset of the registers in the processor (either by adding
read connections to the host’s register file, or by creating a
shadow register file which contains copies of those
registers’ values). An RFU configuration itself determines
from which registers it reads its operands. A single RFU
instruction can read from all of the registers connected to
the RFU, allowing a single RFU instruction to use up to
nine different operands. Thus, the RFU call consists of
only the RFUOP opcode, indicating that an RFU instruction
is being called, an ID operand specifying which instruction
to call, and the destination register operand. Just as
importantly, an RFU instruction currently loaded into the
RFU does not have to wait for the occurrence of an RFU
call in the instruction stream to begin executing, since it
already knows which registers it needs to access. In fact,
all loaded RFU instructions “speculatively” execute during
every processor cycle, though their results are only written
back to the register file when their corresponding RFU call
is actually made. This means that an RFU instruction can
in fact use multiple cycles to execute without stalling the
host processor. For example, assume that RFU instruction
#12 uses the values in register R0...R3, and these values are
computed in the four previous cycles. The instruction
stream for this situation might look like the following:

R0 = R8 - R9; R1 = R10 * 2; LOAD R3; LOAD
R4; R16 = RFUOP #12;

In this example, while the RFU instruction might only have
one cycle (its normal execute cycle) to use the value from
register R4, it will have at least four cycles to use the value
from R0, three cycles to use the value from R1, and two
cycles to use the value from R3. As long as late-arriving
operands are not needed until near the end of an RFU
computation, much more complex operations can be done
inside the RFU than are possible in a single clock cycle.
Thus, with careful RFU mapping creation and register
assignment, and the application of code motion techniques,
very complicated computations can be performed.

The Chimaera Architecture

The overall Chimaera architecture is shown in Figure 1.
The main component of the system is the Reconfigurable
Array, which consists of FPGA-like logic designed to
support high-performance computations. It is here that all
RFU instructions will actually be executed. This array gets
its inputs directly from the host processor’s register file, or
a shadow register file which duplicates a subset of the

3

values in the host’s register file. Next to the array is a set of
Content Addressable Memory locations, one per row in the
Reconfigurable Array, which determine which of the loaded
instructions are completed. The CAMs look at the next
instruction in the instruction stream and determine if the
instruction is an RFUOP, and if so whether it is currently
loaded. If the value in the CAM matches the RFUOP ID,
the value from that row in the Reconfigurable Array is
written onto the result bus, and thus sent back to the register
file. If the instruction corresponding to the RFUOP ID is
not present, the Caching/Prefetch control logic stalls the
processor, and loads the proper RFU instruction from
memory into the Reconfigurable Array. The caching logic
also determines which parts of the Reconfigurable Array
are overwritten by the instruction being loaded, and
attempts to retain those RFU instructions most likely to be
needed in the near future. Reconfiguration is done on a
per-row basis, with one or more rows making up a given
RFU instruction.

Caching/
Prefetch
Control
(Partial
Runtime

Reconfig.)

IR

Result Bus

Memory Bus
Reconfigurable Array

Instruction
Decode
CAM &
Output

Collapsing
Muxes

(Shadow) Register File

H
os

t P
ro

ce
ss

or

R
0 i

..R
8

i

Figure 1. The overall Chimaera architecture.

Fast Carry

Reg.
 Ports

4-LUT/
2x3-LUT

Reg.
 Ports

4-LUT/
2x3-LUT

I1 I2 I3 I4 I1 I2 I3 I4

O1 O2 O3 O4 O1 O2 O3 O4

Longline B

Longline A

Figure 2. The Chimaera Reconfigurable Array
routing structure.

The Reconfigurable Array itself is shown in Figure 2 and
Figure 3. This architecture has been inspired by the
Triptych FPGA [Hauck92, Borriello95, Ebeling95], the

Altera FLEX 8000 series [Altera95], and PRISC
[Razdan94a, Razdan94b]. The routing structure is shown
in Figure 2. The reconfigurable logic is broken into rows of
logic cells between routing channels. Within that row,
there is one cell per bit in the processor’s memory word, so
for a 32-bit processor there are 32 cells per row. All cells in
a given column I have access to the Ith bit of registers R0-
R8, allowing it to access any two of these bits. Thus, a cell
in the rightmost (0th) column in the reconfigurable array
can read any two least significant bits from registers R0
through R8. Which register(s) a cell accesses is determined
by its configuration, and different cells within the array can
choose which registers to access independently.

Cout

W X Y Z

Cin

2 LUT 2 LUT 3 LUT

F1 F2

I1 I2 I3 I4

1 2 3 4

5

6 7

8

9

Figure 3. The Chimaera Reconfigurable Array
logic block.

The cells of the array send four outputs O1..O4 and receive
four inputs I1..I4 from the rest of the array. Inputs I1 and
I4 come from the cell directly above, yielding high-speed
connections to support regular datapath structures. Most
computations will tend to involve bits from the same
position in a data word, and thus will make heavy use of
these direct connects. Inputs I2 and I3 can come from
further away in the array (although they also draw
exclusively from the outputs of the cells in the row above
them). Input I2 for a cell in column C can choose from the
O2 outputs from the cells in column C, C+1, or C-1 in the
row above it, or from longline A. Input I3 can read from
the same O2 outputs as I2, as well as the O3 outputs of cells
within 3 of this cell (C-3 through C+3) and longline B. The
longlines span the width of the array, with longline A
connected to any one of the O2 outputs from the row above,
and longline B connect to any one of the O3 outputs. This
structure allows for the efficient communication of values
locally within the array, as well as the global
communication of any two values through the longlines.
Each of the outputs of a cell are independently chosen from

4

any of its four inputs, the two outputs from the function
block, and the two values read from the registers.

Chimaera’s logic block is shown in Figure 3. The logic
block takes the four inputs to the cell and shuffles them (via
muxes 1-4) into intermediate signals W, X, Y, and Z. Since
I1 and I4 can be interchanged in the routing structure
without conflict, and W and X can be interchanged in the
logic block without changing the possible functionality, we
can use 2:1 muxes for W and X and still have complete
permutability of the inputs. The logic block itself can be
configured as a 4-LUT, two 3-LUTs, or a 3-LUT and a
carry computation. This is done by realizing that a 2:1 mux
controlled by an internal signal (not a programming bit)
choosing between two N-LUT outputs, where those N
inputs are identical, creates a (N+1) LUT. Thus, although
mux 6 looks like it just chooses between two values, it
actually forms a 3-LUT with the two 2-LUTs generating its
input. Thus, to configure the cell as two 3-LUTs, Y is
routed through mux 7, Z is routed through mux 5, and the
output of the 3-LUT is sent through 9, making F1 =
3LUT(W,X,Y) and F2 = 3LUT(W,X,Z). A 4-LUT is
created by sending Y through muxes 5 and 7, and the
output of mux 8 through mux 9. Thus, mux 6 is still part of
a 3-LUT, and mux 8 becomes the end of the 4-LUT,
making F2 = 4LUT(W,X,Y,Z). To perform a carry
computation, Cin (from the cell one to the right in the same
row) is sent through muxes 5 and 7, and the output of the 3-
LUT through mux 9. Thus, Cout and F1 = 3-
LUT(W,X,Cin), and F2 = 3-LUT(W,X,Cin), with the left 3-
LUT configured to compute the Carry value for this bit
position, and the right 3-LUT generating the Sum. By
using this carry configuration arithmetic and logical
operations such as addition, subtraction, comparison, parity
and others can be supported very efficiently. Note that
Figure 3 represents the functionality possible in Chimaera’s
logic block, but not the actual implementation.
Specifically, Chimaera’s carry chain is not a simple ripple-
carry, but instead uses an innovative high-performance
carry chain structure that can provide the same functionality
with more than an order of magnitude less delay
[Hauck97].

There are some unusual aspects of the Chimaera
architecture designed to allow it to efficiently provide
custom instructions for its host processor. First, there are
no state-holding elements in the Reconfigurable Array.
Most FPGAs have Flip Flops or Latches in their logic block
in order to implement sequential logic. However, such
elements would require special consideration during
context switches and during the loading of new instructions,
since this state would need to be properly maintained over
time. Also, these stateholding elements would complicate
the speculative execution model of the system, since not

only must there be support to write the proper result back to
the register file, it would also need to have control over
when the stateholding elements are overwritten. Instead,
we use the register file of the host processor as the only
storage elements in the system, and allow the standard
context switch mechanisms to handle all storage
management issues. Sequential computations can still be
implemented, with the result of one RFU instruction
becoming the input to a subsequent RFU instruction by
storing the value in a register accessible by the
Reconfigurable Array.

Not only does the Chimaera RFU not have internal
stateholding elements to implement sequential logic, it also
lacks pipelining latches. This means that the registers a
mapping accesses must remain at their proper value until
the instruction is completed. An alternative to this would
be to insert latches into the signal flow, allowing an input
register to change before the instruction executes as long as
the value was stable while it was being accessed. However,
because of context switches due to multiprogramming, as
well as stalls in the host processor, this turns out to be
impractical. Specifically, imagine that we have an RFU
instruction that reads the value of register R0 four cycles
before it completes (i.e. there are 4 sets of pipeline latches
between the register access and the output), and the
instruction stream stores a new value into R0 two cycles
before the RFU instruction is called. During normal
operation, the RFU sees the old value stored in R0 (the
value it is designed to use) and the result is properly
computed. However, there may be a multiple cycle stall or
context switch between the storing of the new value into R0
and the calling of the RFU instruction. This means that the
proper value is no longer available in R0, and the RFU
instruction will compute the wrong value. Since this means
that we must always require that a register remain stable
between the time an RFU instruction reads that register and
it completes, pipelining latches become unnecessary, and
are not present in our architecture.

Another interesting aspect of this architecture is the strictly
downward flow of information and computation through
the array. There is no way to send signals back to a higher
row in the system. This structure mimics both the linear
sequence of instructions found in an instruction stream, as
well as the unidirectional flow of information found in
strictly combinational logic. Inputs are accessed at any
level in the computation, with early processing occurring
near the top of an instruction, and results being produced at
the bottom. Signals that travel across several rows must
route through unused inputs and outputs in the intervening
cells.

The routing structure has also been designed to efficiently
support partial run-time reconfiguration. Instead of

5

requiring that every time a new instruction needs to be
loaded into the RFU the entire reconfigurable array must be
reconfigured, we will instead only change the contiguous
set of rows required to hold the new instruction(s). In a
normal FPGA, there are some configuration (such as
multiple active writers to a single shared routing resource)
which can destroy the FPGA with excessive current flows,
and thus must be avoided. Avoiding these configurations
during run-time reconfiguration is difficult, and may
require that the portion of the FPGA be overwritten by a
default “safe” configuration before the new configuration is
loaded. This slows down reconfiguration, and means that a
corrupted configuration could destroy the system. In
Chimaera’s Reconfigurable Array only the longlines have
more than one possible driver. All others are multiplexer
based, meaning that regardless of the state of the
programming bits there will be only one active driver. The
longlines require a different solution (see Figure 4). Along
with each longline is a control signal which travels from
left to right. During normal operation, the “Configured?”
input is true. The value passed from a cell to its neighbor
on the right is true so long as none of the drivers to the
recipient’s left are active. Once such a bit is found, that bus
writer is enable. The control line from this cell is false,
ensuring that no other bus writer will be turned on. Thus,
even if the configuration bits are set to turn on more than
one writer, all but the leftmost will be disabled. During
configuration of this row, the “Configured?” signal is set to
false, ensuring that none of the longline drivers will be
enabled. The control signal for disabling drivers is also
useful for controlling bus repeaters. Since the longlines
span the width of the reconfigurable array, the capacitance
of this line would either greatly slow down signal
propagation, or require unreasonably large drivers. We can
instead insert repeaters into the system, breaking the
longline into shorter segments and boosting signal drive.

As mentioned earlier, the Chimaera RFU supports partial
run-time reconfiguration on a per-row basis. Specifically,
when a new instruction is loaded it will overwrite one or
more rows of the system. While not all rows need be
changed, if an instruction wishes to use any portion of a
row it must use that entire row. What constitutes a “row” is

an important consideration. In Chimaera, all primary inputs
to an RFU instruction come from the register access ports.
Also, the result of an instruction comes from the F2 output
of the function block. Thus, the natural breakpoint between
one RFU instruction and the next is in the middle of a cell.
A “row” for reconfiguration purposes consists of the
register access ports and output muxes of one row of cells,
the input muxes and logic blocks of the row of cells below
it, and the routing channel between these cells.

The last portion of Chimaera that needs to be described is
the RFU’s decode unit. As part of the host processor’s
decode logic it determines if the current instruction is the
RFUOP opcode, and if so it tells the RFU to produce the
next result. The RFU must now decide if the requested
instruction is currently loaded. This is done by associating
a content-addressable memory cell with each row in the
Reconfigurable Array, with its value specified by an RFU
instruction’s configuration data. This cell contains the ID
of the instruction computed in that row, and is checked
against the RFU instruction ID contained as one of the
operands in the RFU call. Rows that are not configured, or
which are in the middle of a multi-row instruction, are set
to a default value which can never match an RFU call. If
the value contained in that CAM cell matches the value in
the RFU call, the value computed in that row is sent onto
the result bus and written into the proper register. The
value written is the F2 output of the function blocks in that
row, with the Ith cell producing the Ith bit of the result. If
no CAM cell matches the RFU call, the configuration
management unit first loads the instruction from memory
and then executes it. Note that this organization allows for
multi-output mappings. If a single mapping needs to
produce multiple values, each of these values is generated
at the output of a different row, and each of these rows is
given a different RFU instruction ID. Although execution
of this multi-output function requires multiple cycles, since
each output will require a separate RFU call to write it back
to the register file, it does allow these outputs to share logic
in the RFU.

A slight modification to this decode scheme has been added
to improve mapping density. In many cases, a logical test

Configured?

Longline A

P = Programming Bit

O2

P

Cell #31

O2

P

Cell #30

O2

P

Cell #29

O2

P

Cell #28

Bus Repeater

O2

P

Cell #27

Figure 4. Control logic for the longlines, including logic to avoid multiple writer conflicts and a
repeater.

6

will determine which of a set of values will be assigned to a
register. For example, consider the code segment:

A = B + C; if (D == E) A = A + F;

In the RFU structure as described so far, this sequence of
instructions would require 4 rows: one to test if D and E are
equal, one to compute B + C, one for adding F to that value,
and a final row to choose between the values (B+C) and
((B+C)+F) based on the value of the test. We can do better
than this. In addition to checking whether the value of the
CAM matches the RFU instruction ID in the RFU call, it
also checks the value of the F1 signal in cell #31 of that
row. If the CAM value matches the instruction ID and the
F1 signal is true, the row produces the result. Otherwise,
this row doesn’t match the RFU call. We can use this logic
to remove the fourth row from the mapping just proposed.
Instead of muxing together the two potential output values,
we instead assign the same RFU instruction ID to both row
two (B+C) and three ((B+C)+F). To chose between them,
we configure the leftmost cell in each row to output the
value of the test done in the first row onto its F1 signal,
with the second row outputting true if the test is false, and
the third row outputting true if the test is true. Thus, the

addition of this small extra logic in the instruction decode
CAMs allows the muxing together of values often required
in computations. Note that since the F1 signal is generated
by a 3-LUT, and uses signals from inside the reconfigurable
array, very complicated multiplexing can be accomplished,
with multiple rows assigned the same RFU instruction ID
and computing a possible output. There are also provisions
for disabling this logic by forcing the signal to the CAM to
true in cases where the F1 3-LUT in cell #31 is needed for
other logic.

Application Examples

In this section we give some examples of using the
Chimaera RFU to accelerate standard software algorithms.
Since we do not yet have an automatic mapping system to
generate Chimaera implementations, we have mapped
critical portions of some standard algorithms by hand to our
architecture. Note that this does restrict the achievable
speedups, since we have only optimized one or two short
code sequences for each algorithm. A production version
should be able to find many such opportunities in a single
program, and achieve higher performance gains.

 Line Source Code Standard RFU-based
 1: disp = hsize_reg - i; bne v0, zero, Probe RFUOP a0, 1
 2: if (i == 0) subu a0, s1, v0 Probe:
 3: disp = 1; li a0, 1 RFUOP t0, 2
 4: Probe: Probe: lw v1, 0(t0)
 5: if ((i -= disp) < 0) subu v0, v0, a0 RFUOP v0, 3
 6: i += hsize_reg; bgez v0, NEXT
 7: temp = htabof[i]; sll t9, v0, 2
 8: addu v0, v0, s1
 9: sll t9, v0, 2
 10: NEXT:
 11: addu t0, s0, t9
 12: lw v1, 0(t0)
 13: noop

Figure 5. Source code (left) of a portion of the compress benchmark, the implementation produced by a standard C
compiler (center), and a version using the Chimaera RFU (right).

Row CAM Flag Computation

1 1 Izero read i; Izero = (i == 0); output 1

2 1 !Izero read hsize_reg; output hsize_reg - i

3 3 pos read i, disp; pos = (i - disp) >= 0; output v1 = i - disp

4 2 pos read htabof, hsize_reg; output (v1 << 2) + htabof

5 3 !pos read i, disp; output v2 = (i - disp) + hsize_reg

6 2 !pos read htabof; output (v2 << 2) + htabof

Figure 6. RFU contents for the Compress example. Note that instruction 1 (the first two rows) is separate from the
rest, and does not have to be placed adjacent to the other instructions, but instructions 2 and 3 (rows 3-6) share logic,
and thus must be placed contiguously.

7

In order to test our results, we have taken the software
programs and compiled them for a MIPS R4000 processor.
These assembly language implementations were then
optimized by hand, taking critical regions found by the
performance evaluator Pixie and mapping them to the RFU.
Note that since we are working with the MIPS instruction
set, all branches and loads are followed by a single delay
slot that must be filled. For simplicity we ignore pipeline
stalls from cache misses.

In the examples we will use a textual shorthand to describe
a mapping to a row in the RFU. A “read” operation is the
accessing of a value from the register file, with all cells
reading their bit of that register unless a bit position
subscript is given. This read is performed at the top of that
row (before the horizontal routing channel), and thus the
values are available for the logic blocks to access. An
“output” operation means that that value is computed in the
cell’s logic block and sent to the F2 signal, where it is
available to be written back to the register file. The “flag”
signal is the signal sent from cell 31 to the Instruction
Decode CAMs, where both the CAM value must match the
instruction ID in the RFU call and the flag must be true in
order to write this value back to the register file. This flag
value normally comes from the left 3-LUT in the cell,
though it can be forced to true via the configuration.

Compress

Compress is a member of the Spec92 benchmark suite. It
consists of one main loop with a complex control flow,
requiring multiple simple RFU instructions to provide a
significant speedup. An example is shown in Figure 5

(simplified somewhat to aid understanding). RFU
instruction #1 computes the value of the variable “disp” as
specified in source code lines 1-3. In the standard
computation this requires three assembly instructions: the
initial subtract (line 2), the branch to decide if “i” is zero
(line 1), and a load to set the value to 1 (line 3). Note that
the branch has been moved before the subtract, since this
architecture has a single branch delay slot. Performing this
computation inside the RFU requires only two rows (Figure
6 and Figure 7). The first row decides whether “i” is zero
via a carry-based computation, which results in the internal
signal “Izero”. Since if “i” is zero we can immediately
assign 1 to “disp”, we also fold this assignment into the
same row. Izero is sent to the Instruction decode CAM,
which will use this row’s output if Izero is true. The right
3-LUT in these cells are set to the full-word “1” value, the
value needed to be assigned to “disp” if “i” is zero. The
second row is used to handle the case when “i” is not zero.
Here, we negate the “Izero” flag in cell #31 and send it to
the decode CAM, since we want the result to come from
this row only if it is not computed by the previous row.
This row also computes the value of “hsize_reg - i” via a
carry-based subtraction, and writes it to each cell’s F2
signal, from which it is sent to the result bus.

The rest of the logic for this code sequence is handled by a
two-output RFU instruction. In the source code, the value
of “i” is computed, and then it is used as an array access.
Thus, two values need to be computed: “i”, and the address
of the memory location to be read. In the RFU mapping,
RFU instruction 2 computes the memory access location,
which is then loaded, and the writeback of the new “i”
value is done in RFU instruction 3 in the load delay slot.

(ID == 1)
& Izero

hs
0
 + !i

0
hs

0
⊕i

0

i
0
==0 TRUE

hsize_reg
0

i
x

hs
X
⊕!i

X

⊕Cin

 i
X
==0

&Cin
FALSE

hsize_reg
X

i
X

(hs
x
&!i

x
)+

(hs
x
&Cin)

+(!i
x
&Cin)

hs
31
⊕!i

31

⊕Cin

Izero =
(i

31
==0

&Cin)
FALSE

hsize_reg
31

i
31

!Izero
(ID == 1)
& !Izero

Column 31 Column X Column 0CAM

Figure 7. Detailed placement and routing of RFU instruction #1 for the Compress benchmark. Since all columns of
the mapping are identical except for the two ends, column X represents the mapping for all columns 31 < X < 0.
The upper boxes in each cell are the two 3-LUTs, and the lower middle box is the register access ports. For
simplicity the routing of inputs to the function blocks is not shown.

8

As shown in Figure 6, these two instructions occupy 4 rows
in the RFU, and share a significant amount of logic. This
mapping contains a constant-length shift of two bit
positions. The Chimaera RFU is not able to efficiently
support variable-length shifts (which would instead be
performed on the host processor), but short constant-length
shifts can be performed by the horizontal routing channels.
Note also that we read some values from registers multiple
times in order to reduce the depth of the logic (which also
serves to minimize routing congestion). Different CAM ID
values and Flags identify the different rows in the RFU,
providing for free muxing of output values. By using just
these three RFU operations we achieve a speedup of 1.11
over the standard software version, and many other such
optimizations are possible.

1: int cmppt (a, b)
2: PTERM *a[], *b[];
3: {
4: register int i, aa, bb;
5: for(i=0; i<ninputs; i++){
6: aa = a[0]->ptand[i];
7: bb = b[0]->ptand[i];
8: if (aa == 2)
9: aa = 0;
10: if (bb == 2)
11: bb = 0;
12: if (aa != bb) {
13: if (aa < bb)
14: return (-1);
15: else
16: return (1);
17: }
18: }
19: return (0);
20: }

Figure 8. Code from the primary loop in Eqntott,
part of the Spec benchmark suite.

Eqntott

Eqntott is a member of the Spec92 benchmark suite which

spends about 85% of its time in a single routine, “cmppt”
(see Figure 8). The routine iterates through a pair of arrays,
and does a complex comparison between the values in those
arrays. In order to accelerate this algorithm via the RFU,
we created two custom instructions (see Figure 9 and
Figure 10). RFU instruction 1 is called in the middle of the
loop, and determines whether the algorithm breaks out of
the loop by generating the new value of variable “i”. To
break out of the loop we set “i” to ninputs, while to remain
in the loop we just increment it. Once we break out of the
loop (or fall out once we have searched the entire length of
the arrays), we call RFU instruction 2 to determine what
return value to send. Most of the effort in these mappings
is comparisons between two values, which can be done
efficiently by the carry logic in the RFU. We in fact are
able to perform two such tests in row 2 because of the
specifics of the comparisons.

1: TOP:lh a0, 0(a1)
 /* a1 = &(a[0]->ptand[i]), a0 = aa */
2: lh a2, 0(a3)
 /* a3 = &(b[0]->ptand[i]), a2 = bb */
3: addiu a1, a1, 2
4: RFUOP v0, 1 /* End loop? */
5: bne v0, v1, TOP /* i!=ninputs?
*/
6: addiu a3, a3, 2 /* Delay slot */
7: jr ra /* Return */
8: RFUOP v0, 2 /* Return val */

Figure 9. Code for lines 5-20 of Eqntott using
RFU instructions #1 and #2.

In this mapping the two instructions share some logic. In
fact, the computation of RFU instruction 2 actually spans
seven rows, since row 7 indirectly uses the value computed
in row 1. This computation obviously is too long to fit into
a single clock cycle. However, as can be seen in Figure 9,
all operands to RFU instruction 2 are available by line 2,
and thus this instruction has 6 cycles in which to compute.
Instruction 1 actually has 2 cycles to compute in as well,
since an unrelated addition was moved in front of the RFU

Row CAM Flag Computation

1 null read aa, bb; same = (aa==bb)

2 1 !equal read ninputs; equal = (same || ((aa==0 || aa==2)&&(bb==0 || bb==2))); output ninputs

3 1 equal read i; output i+1

4 2 equal read aa; aaistwo = (aa==2); output 0 /* Note: Cell 30 generates aaistwo in F1 */

5 null read bb; newaa = if (aaistwo) 0 else aa; bbistwo = (bb==2)

6 2 aasmaller aasmaller = ((newaa < bb) && !bbistwo); output -1

7 2 bbsmaller bbsmaller = (!aasmaller && !equal); output 1

Figure 10. RFU instructions for Eqntott.

9

call. The use of RFU instructions in this critical portion of
the algorithm greatly simplifies the routine (which normally
requires 23 instructions in place of our 8), and achieves a
speedup of 1.8.

Life

The previous examples have been benchmark circuits
where we have little control over the algorithm organization
or understanding of the details of its operation. In order to
test how algorithms can be altered to take advantage of the
Chimaera RFU, we developed an implementation of
Conway’s Game of Life [Gardner70]. This is a simple
cellular automata with states “Live” and “Dead”, where a
cell determines its next state based on its own state and that
of its eight direct neighbors (including diagonals). If there
are 3 live neighbors, the cell becomes alive. If there are 2
live neighbors, the cell retains its current state. Otherwise,
the cell becomes dead. We wrote a software version of this
algorithm, representing each cell as a single bit, allowing us
to store a 128x128 board in an array of 4 by 128 integers.

int get_bit(int temp, int
position)
{

temp >>= (31 - position);
temp &= 0x00000001;
return temp;

}

Figure 11. The get_bit routine from the Life
algorithm. This routine retrieves the bit from
variable temp at the specified position.

In the software version of the algorithm, more than half of
the time is spent in the routines “get_bit” and “put_bit”,
which read and write the value of individual cells. By
simply replacing these routines with RFU instructions we
can get a speedup of 2.06. The RFU instruction for
“get_bit” is given in Figure 12.

We can do significantly better than this by realizing that
although the processor itself does not have routines capable
of performing more than one cell calculation at a time, the
RFU can be configured to compute multiple cells at once.
As shown in Figure 13, the computation for a cell’s next
state can be accomplished in two columns of an RFU, with
a mapping 4 rows high. Thus, by careful packing we can
compute all of the odd bit positions in a single word in one
RFU instruction, and compute the even bit positions in the
next instruction. This does require the movement of values
around in the registers, since every call to an RFU
instruction expects that all the operands will be in specific
registers. Some required values may thus only be available
the cycle before the RFU instruction is called, and we
therefore inserted a NOOP in front of some RFU calls to
add extra computation time. The bit-parallel
implementation of the Game of Life greatly reduces the size
of the inner loop, achieving a speedup of about 160 times
over a standard software implementation.

Conclusions

Current reconfigurable systems have been able to deliver
huge speedups for some types of applications, but require a
significant effort to hand-optimize the algorithms. This is

Row CAM Flag Computation

1 null read pos4, pos2, pos1, temp; t1 = filter(temp, !pos2, !pos1)

2 null read pos3, pos0; t2 = filter(t116..31, pos3, pos0); t3 = filter(t10..15, !pos3, !pos0)

3 1 TRUE v = (if (pos4) t3 else t2); Cells 31-1 output 0, Cell 0 outputs v;

Figure 12. RFU instructions for a basic implementation of Life. The filter function zeroes any bits of the first
operand that are not at any of the bit positions with the corresponding indices (i.e. if pos0 and pos1 were passed in,
and both were 0, any bit not in a bit position that is a multiple of four would be set to zero). The indices are negated
to account for the subtraction in the source code.

Row CAM Flag Computation

1 null read NW, N, NE, SW, S, SE; C1,S1 = FullAdd(NE,N,NW); C2,S2 = FullAdd(SW,S,SE)

2 null read E; V2,V1,V0 = 2BitAdd(C1S1, C2S2, Cin = E);

3 null X2, X1 = (if (V2V1V0 > 4) 00 else V1, V0);

4 1 TRUE read W, Self, OddVals; output Life(X2, X1, W, Self); Odd cells output OddVals;

Figure 13. RFU instructions for a highly parallel implementation of Life. Only a single even bit position’s
calculation is shown. All 16 even bit position computations can be performed in parallel in a single RFU
instruction, sharing the same rows in the RFU. A similar RFU instruction is needed to compute the odd bit
positions.

10

primarily due to the communication bottleneck between the
reconfigurable logic and the host processor, which requires
careful optimization, and the migration of a significant
amount of computation to the reconfigurable logic, to
overcome.

In order to extend the benefits of reconfigurable logic to
general-purpose computing, we propose integrating the
reconfigurable logic into the processor itself. The
Chimaera system provides a host microprocessor with a
reconfigurable functional unit for implementing custom
instructions on a per-application basis. Direct read access
to the processor’s register file enables multi-input functions
and a speculative execution model allowing for multi-cycle
operations without pipeline stalls. A novel instruction
decode structure provides for multi-output functions and
efficient implementation of complex operations. Finally,
by using partial run-time reconfiguration, we can view the
RFU as an operation cache, retaining those instructions
necessary for the current operations.

Through several hand-mappings to the RFU we have
demonstrated the power of the Chimaera system. The
Compress benchmark demonstrated a speedup of 1.11 after
only limited optimization, Eqntott a speedup of 1.8, and
basic Life a speedup of 2.06. These optimizations required
only local optimization of a small amount of the source
code, transformations that should be possible to achieve in
an automatic mapping system. The more aggressive
parallel optimization of the Life algorithm produced a
speedup of about 160, demonstrating the potential for
extremely high performance for some applications via
careful, hand optimization.

References
[Albaharna94] O. T. Albaharna, P. Y. K. Cheung, T. J.

Clarke, “Area & Time Limitations of FPGA-based
Virtual Hardware”, International Conference on
Computer Design, pp. 184-189, 1994.

[Albaharna96] O. T. Albaharna, P. Y. K. Cheung, T. J.
Clarke, “On the Viability of FPGA-based Integrated
Coprocessors”, IEEE Symposium on FPGAs for
Custom Computing Machines, 1996.

[Altera95] Data Book, San Jose, CA: Altera Corp.,
1995.

[Borriello95] G. Borriello, C. Ebeling, S. Hauck, S.
Burns, “The Triptych FPGA Architecture”, IEEE
Transactions on VLSI Systems, Vol. 3, No. 4, pp. 491-
501, December, 1995.

[DeHon94] A. DeHon, “DPGA-Coupled
Microprocessors: Commodity ICs for the Early 21st
Century”, IEEE Workshop on FPGAs for Custom
Computing Machines, pp. 31-39, 1994.

[Ebeling95] C. Ebeling, L. McMurchie, S. Hauck, S.
Burns, “Placement and Routing Tools for the Triptych
FPGA”, IEEE Transactions on VLSI Systems , Vol. 3,
No. 4, pp. 473-482, December, 1995.

[French93] P. C. French, R. W. Taylor, “A Self-
Reconfiguring Processor”, IEEE Workshop on FPGAs
for Custom Computing Machines, pp. 50-59, 1993.

[Gardner70] M. Gardner, “Mathematical Games: The
Fantastic Combinations of John Conway’s New
Solitaire Game ‘Life’”, Scientific American, pp. 120-
123, October, 1970.

[Hauck92] S. Hauck, G. Borriello and C. Ebeling,
“TRIPTYCH: An FPGA Architecture with Integrated
Logic and Routing”, Advanced Research in VLSI and
Parallel Systems: Proceedings of the 1992
Brown/MIT Conference, pp. 26-43, March, 1992.

[Hauck95] S. Hauck, Multi-FPGA Systems, Ph.D.
Thesis, University of Washington, Dept. of Computer
Science & Engineering, 1995.

[Hauck97] S. Hauck, M. Hosler, T. Fry, “High-
Performance Carry Chains for Reconfigurable
Computing”, submitted to IEEE Symposium on
Custom Computing Machines, 1997.

[Rajamani96] S. Rajamani, P. Viswanath, “A Quantitative
Analysis of Processor - Programmable Logic
Interface”, IEEE Symposium on FPGAs for Custom
Computing Machines, 1996.

[Razdan94a] R. Razdan, PRISC: Programmable
Reduced Instruction Set Computers, Ph.D. Thesis,
Harvard University, Division of Applied Sciences,
1994.

[Razdan94b] R. Razdan, M. D. Smith, “A High-
Performance Microarchitecture with Hardware-
Programmable Functional Units”, International
Symposium on Microarchitecture, pp. 172-180, 1994.

[Wirthlin95] M. J. Wirthlin, B. L. Hutchings, “A
Dynamic Instruction Set Computer”, IEEE
Symposium on FPGAs for Custom Computing
Machines, 1995.

[Wittig96] R. Wittig, P. Chow, “OneChip: An FPGA
Processor with Reconfigurable Logic”, IEEE
Symposium on FPGAs for Custom Computing
Machines, 1996.

