
Chortle-crf Fast Technology Mapping for

Lookup Table-Based FPGAs

Robert Francis, Jonathan Rose, Zvonko Vranesic

Department of Electrical Engineering, University of Toronto, Canada

Abstract

A new technology mapping algorithm for lookup table-

based Field Programmable Gate Arrays (FPGA) is pre-

sented. The major innovation is a method for choosing

gate-level decompositions based on bin packing. This

approach is up to 28 times faster than a previous ex-

haustive approach. The algorithm also exploits recon-

vergent paths and replication of logic at fanout nodes

to reduce the number of lookup tables in the circuit.

The new algorithm is implemented in the Chortle-crf

program. In an experimental comparison Chortle-crf

requires 14 YO fewer lookup tables than Chortle [Fran90]

and 10 ~o fewer lookup tables than mis-pga [Murg90a]

to implement a set of benchmark networks.

Chortle-crf can also implement a network as a cir-

cuit of Xilinx 3000 series Configurable Logic Blocks

(CLBS). To implement the benchmark networks as cir-

cuits of CLBS Chortle-crf requires 12 70 fewer CLBS

than mis-pga and 22 % fewer CLBS than XNFOPT

[Xili89]. In these experiments Chortle-crf waa an aver-

age of 68 times faster than mis-pga and 30 times faster

than XNFOPT. 1

1 Introduction

Field Programmable Gate Arrays (FPGAs) are a re-

cent innovation in Application Specific Integrated Cir-

cuits (ASICS) that provide both large scale integra-

tion and user-programmability [Hsie88] [Ahre90]. The

user-programmability of FPGAs can dramatically re-

duce ASIC turn-around time and manufacturing costs.

An FPGA consists of an array of programmable logic

blocks and a programmable routing network. An im-

portant class of FPGAs consists of those that use logic

1This work ~= supported by NSERC Operating Gr~ts

#URFO043298 and #OGPOO05280, a research grant from Bell-

Northern Research, and a research grant from the ITRC of On-

tario.

Permlsslon to copy w>thout fee all or part of this material I< granted

provided that the copies are not made or distributed for drect commercial

advanrage, the ACM copyright notice and the title of the pubhcation and
Its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requmes a fee and/or specific penmssion.

blocks containing lookup tables, such as the first com-

mercial FPGA [Cart 86]. Moreover, recent studies in

FPGA architectures have suggested that lookup tables

are an area-efficient method of implementing combina-

tional functions [Rose90]. A K-input lookup table is

a digital memory with K address lines and a one-bit

K bits and is capableoutput. This memory contains 2

of implementing any Boolean function of K input vari-

ables.

This paper presents a new algorithm for lookup ta-

ble technology mapping which is implemented by the

Chortle-crf program. Chortle-crf converts a combina-

tional network of ANDs, ORs, and NOTS into a circuit

of lookup tables where every lookup table has K or fewer

inputs. The goal is to minimize the total number of K-

input lookup tables in this circuit. For example, the

network in Figure 1a can be implemented by the circuit

of three 5-input lookup tables shown in Figure lb. The

dotted boundaries indicate the functions implemented

by each lookup table. Note that one of the lookup ta-

bles uses only 4 of the available 5 inputs. All examples

in the remainder of this paper will assume that K is

equal to 5.

2 Background

Technology mapping produces a circuit that implements

a combinational network using a restricted set of circuit

elements. Earl y work in technology mapping, such as

SOCRATES [Greg86] and the work by Kahrs [Kahr86],

focused on circuits created from standard cell libraries.

An important advance in library-based technology map-

ping was the introduction of dynamic programming by

Keutzer [Keut87]. Other library-based technology map-

pers include misII [Detj87] and McMAP [Lisa87].

A lookup table of K-inputs can implement 22K differ-

ent Boolean functions of K variables. For values of K

greater than 3 the library required to describe a K-input

lookup table becomes impractically large and therefore

technology mapping algorithms that deal specifically

with lookup tables are required [Fran90]. Two pre-

viously reported lookup table technology mappers are

Chortle [Fran90] and mis-pga [Murg90a].

The Chortle technology mapper presented in [Fran90]

uses an exhaustive search to find the optimal gate-

level decomposition of every node in a fanout-free tree.

However, the partitioning of the original network into

28th ACM/l EEE Design Automation Conference@

Paper 15.1
22701991 ACM 0.89791-395-7/91/0006/0227 $1.50

If-t-Y
a) combinational

R?
~-----”l

I
i
I

/
I
I

L_____ ---- J

network

Y’

~

I
1

i
!

!
I

i
I

i i
!
i---- ___.J

$$-”
----...-.---.,

I i
! !

i
i

[
I

i
i i

1
!
i

1.......- ..—..

b) circuit of 5-input lookup tables

Figure 1.

fanout-free trees precludes optimization that exploit

reconvergent paths and replication of logic at fanout

nodes.

The mis-pga technology mapper produces a circuit of

lookup tables as an intermediate result [Murg90a]. It

initially performs a non-optimal decomposition of the

combinational network and then focuses on a covering

problem to reduce the number of lookup tables in the

circuit. The covering problem does allow opt imizat ions

that exploit reconvergent paths and replication of logic

at fanout nodes.

3 The Chortle-crf Algorit hm

A major innovation in Chortle-crf is the application of

bin packing to choosing gate-level decompositions. Two

other important features are the exploitation of recon-

vergent paths and replication of logic at fanout nodes

to reduce the number of lookup tables in the circuit.

The principal technique used by Chortle-crf is dy-

namic programming. The combinational network is tra-

versed beginning at the primary inputs and proceeding

toward the primary outputs. At each node a circuit

implementing the cone extending from the node to the

primary inputs of the network is constructed. This cir-

cuit is referred to as the Best Circuit implementing the

node.

Chortle-crf has two goals when constructing the Best

Circuit. The first is to minimize the number of lookup

tables in the circuit and the second is to maximize the

number of unused inputs at the output lookup table.

These unused inputs are important because they may

allow subsequent nodes to be implemented without the

‘Y
,-.-..–-iii

I
. . . --..4 v~--.-.1/-.__y

i
I ii
i ii
--- -.

.- .- - -.
I
i

L ---- ---- J

9’
~----.l
I !
i
I.

a) without gate decomposition

b) with gate decomposition

Figure 2.

addition of extra lookup tables.

3.1 Bin Packing Approach

to Gate Decomposition

The key to constructing the Best Circuit implementing

a node is finding the decomposition of the node that

reduces the number of lookup tables in the final circuit.

For example, five lookup tables are required to imple-

ment the tree shown in Figure 2a. In Figure 2b, the

single OR node of Figure 2a has been decomposed into

two OR nodes, which allows the tree to be implemented

with just two lookup tables.

The construction of the Best Circuit for a node de-

pends upon the Best Circuits that implement the node’s

immediate fanin nodes. The order of the network

traversal ensures that these immediate fanin circuits

have been previously constructed. The output lookup

tables of the fanin Best Circuits will be referred to as

the fanin lookup tables. Figure 3a shows an OR node

and its five fanin lookup tables.

The goal of finding the best decomposition is attained

by constructing a tree of lookup tables that implements

both the functions of the fanin lookup tables and a

decomposition of the node. This tree must contain

the minimum number of lookup tables and the output

(root) lookup table must have the maximum number of

unused inputs possible without increasing the number

of lookup tables in the tree.

The tree of lookup tables is constructed in two steps.

First, a two-level decomposition is constructed and then

this decomposition is converted into a multi-level de-

composition. Figures 3b and 3C illustrate the two-level

and multi-level decompositions constructed from the

Paper 15.1

228

a) fanin lookup tables

I

1

!

I

b) two-level decomposition

.

7’
~..............
I i
/

!
1.—... -__ i

c) multi-level decomposition

Figure 3.

fanin lookup tables of Figure 3a.

3.1.1 Two-Level Decomposition

The two-level decomposition consists of a single jirst-

level node and several second-level nodes. In Figure 3b

the 3-input OR node is the first-level node and its three

inputs are the second-level nodes. Each second-level

node implements the operation of the node being de-

composed over a subset of one, some, or all of the fanin

lookup tables. In Figure 3b there are three second-level

nodes each of which is implemented by a lookup ta-

ble. The first-level node is not yet implemented by any

lookup tables, however, it will be implemented when the

two-level decomposition is converted into a multi-level

decomposition.

The two-level decomposition is constructed using a

bin packing algorithm. In general, the goal of bin pack-

ing is to find the minimum number of bins into which

a set of boxes can be packed [Gare79]. In this case, the

FirstFitDecreasing

{
start with en empty bin list

uhile there are unpacked boxes

{
if the largest unpacked box will not fit

vithin any bin in the bin list

{
create an empty bin and

add i.t to the end of the bin list

}

pack the largest unpacked box into the

first bin it will fit within

}

}

Figure 4: Pseudo code for First Fit Decreasing

bins are the second-level lookup tables and the boxes

are the fanin lookup tables. The capacity of each bin

is K, and the size of each box (fanin lookup table) is

its number of used inputs. In Figure 3a the boxes have

sizes 3, 2, 2, 2, and 2. In Figure 3b the final contents

of the packed bins are 5, 4, and 2. The bin packing

algorithm used is First Fit Decreasing as outlined in

Figure 4 [Gare79].

3.1.2 Multi-Level Decomposition

The decomposition tree is completed by implementing

the first-level node with a tree of lookup tables. The

inputs to the leaf lookup tables of this first-level tree

are the outputs of the second-level lookup tables of the

two-level decomposition. Any second-level lookup ta-

ble with unused inputs can be used to implement a

portion of the first-level tree, thereby reducing the to-

tal number of lookup tables in the decomposition tree.

Figure 3C illustrates the multi-level decomposition con-

structed from the two-level decomposition of Figure 3b.

The detailed procedure for converting the two-level

decomposition into a multi-level decomposition is out-

lined in Figure 5.

The final multi-level decomposition can be shown to

be optimal if the network is a fanout-free tree and the

value of K is less than or equal to 5 [Fran91]. For net-

works partitioned into fanout-free trees the bin packing

approach is up to 28 times faster than the previous ex-

haustive search approach [Fran90], yet it produces cir-

cuits with the same number of lookup tables. This im-

provement in speed makes it practical to consider opti-

mization exploiting reconvergent paths and replication

of logic at fanout nodes, as discussed in the following

sect ions.

Paper 15.1
229

MultiLevel

{
while there is more than one unconnected bin

{
if there are no free inputs

remaining unconnected bins

{
create an empty bin and

add it to the end of the

}

among the

bin list

comect the most filled unconnected bin to

the next unconnected bin vith a free input

}

}

Figure5: Pseudo code for multi-level conversion

3.2 Exploiting Reconvergent Paths

It is possible to exploit local reconvergent paths to find

a better circuit implementing a node. The following

discussion uses the terminology of the previous section,

where the fanin lookup tables are referred to as boxes

and the second-level lookup tables are referred to as

bins.

If two boxes share the same input, then there exists

a pair of reconvergent paths. If the total number of

distinct inputsto these twoboxesis less than orequal to

K, then it impossible topack the two boxes intoone bin.

When these two boxes are packed into the same bin, the

volume occupied is the total number of distinct inputs,

which is less than the sum of the boxes’ individual sizes.

Figure 6a shows a pair of boxes that share an input and

Figure 6b shows the pair of reconvergent paths realized

within a bin.

By merging the two boxes and realizing the pair of re-

convergent paths within a single lookup table, a smaller

portion of the bin is occupied. This may lead to a supe-

rior bin packing, which in turn may lead to a superior

Best Circuit.

However, two boxes can only be merged if they are

packed into the same bin. The two boxes can be forced

into the same bin by merging them before the bins are

packed. Forcing these two boxes into one bin may inter-

fere with the bin packing algorithm and actually result

in an inferior packing. To find the Best Circuit, both the

packing with the forced merge and the packing without

the forced merge need to be considered.

A further complication is that more than one pair

of reconvergent paths may terminate at the node. To

find the Best Circuit, Chortle-crf begins by finding all

pairs of local reconvergent paths. For every possible

combination of these pairs, including none, a circuit is

constructed by first merging the respective boxes of the

a)

!

fanin lookup tables with shared input

-I.-l-.., r-tI--+-t: A.-.1--, .-1-.-1-.

--- --- .

b) realized reconvergent paths

Figure 6.

chosen pairs and then proceeding with the bin pack-

ing. The circuit with the fewest lookup tables (and the

greatest number of unused inputs at the output lookup

table) is retained as the Best Circuit. This realization of

reconvergent paths is a greedy local optimization that

is considered at every node as the network is traversed.

In our experiments with the MCNC benchmark net-

works the largest number of reconvergent pairs at any

one node has been found to be six pairs. The bin pack-

ing approach is fast enough to make the search of all

possible combinations of these pairs practical.

3.3 Replication of Logic

at Fanout Nodes

The previous version of Chortle partitions the combina-

tional network into a set of fanout-free trees [Fran90].

This forces every fanout node to be explicitly imple-

mented as the output of a lookup table, and allows these

nodes to be treated as primary inputs to the rest of the

net work.

It is possible to implement the fanout nodes implic-

itly inside lookup tables, which requires the replication

of some logic at a fanout node. This replication may de-

crease the total number of lookup tables in the circuit

implementing the network. For example, in Figure 7a,

three lookup tables are required to implement the net-

work when the fanout node is explicitly implemented.

In Figure 7b, the AND gate implementing the fanout

node is replicated and only two lookup tables are re-

quired to implement the network.

When the dynamic programming traversal of the net-

work encounters a fanout node the Best Circuit imple-

menting the fanout node is constructed. At this point

Paper 15.1

230

‘frw.-.............i\ii
L---J

.- -- -i ,... ---
! --l

I
I
!
!
!

I
L---- ..-! L..- .-.__!

a) no replicated logic

Iwl~--.-----.-....;~.............-.,
!/
!1
II
II
!1
II
Ii. ---------—-. —.-..

b) with replicated logic

Figure 7.

two options are considered. The fanout node can be ei-

ther explicitly implemented, or implicitly implemented.

If the fanout node is explicitly implemented it is treated

as a primary input to the rest of the network. If it is

implicitly implemented, a replica of the function of the

output lookup table is made for each fanout edge. This

replica replaces the fanout node as the source of the

edge.

Every path starting with an edge from a fanout node

will eventually reach another fanout node or a primary

output of the network. These subsequent fanout nodes

and primary outputs will be referred to as the visible

nodes.

To determine if the replication is worthwhile

Chortle-crf solves a series of subproblems. For each

visible node the Best Circuit implementing the visible

node is constructed twice; once with the replication and

once without the replication. Each subproblem is itself

solved using Chortle-crf with the assumption that any

remaining fanout nodes encountered in these subprob-

lems are explicitly implemented and can therefore be

treated like primary inputs. The bin packing approach

is fast enough to make solving these subproblems prac-

tical.

After the subproblems have been solved the total

number of lookup tables required to implement the vis-

ible nodes both with and without the replication are

known. If the total number of lookup tables is reduced

by the replication, then the replication is retained. The

replication of logic is considered at every fanout node aa

it is encountered by the dynamic programming traversal

of the network.

Network

z4ml

misexl

vg2

5xpl

count

9symml

9sym

apex7

rd84

e64

C880

apex2

alu2

duke2

C499

rot

apex6

alu4

apex4

des

total

-c

lookups

9

20
24
34
47
63
69
72
76
95

115

123

131

138

166

219

232

238

603

1073

3547

Cho]

-cr

Iookups

9

20
24
31
45
59
65
71
76
95

110

123

121

136

164

207

219

219

600

1060

3454

:-crf

-Cf

lookups

9

19

23

34

40
62
67
71
74
80

112

121

127

126

158

208

230

227

579

1050

3417

-crf

lookups

6

19

21

27

31

55

59

64

73

80

86

120

116

120

74

189

212

195

558

952

3057

mis-pga

lookum

8

11

30

31

31

56

72

64

40

82

103

80

129

128

66

200

243

235

765

1016

3390

Table 1: Results for K = 5

4 Results

To evaluate Chortle-crf a series of experiments were

performed on networks from the MCN-C logic synthe-

sis benchmark suite. Four experiments were performed

on each network:

-c using only the constructive bin packing approach

-cr using the reconvergent optimization

-cf using the replication optimization

-crf using both reconvergent and replication

The first step in the experimental procedure was

technology independent logic optimization using the

misII logic optimizer with the standard script [Bray86].

Chortle-crf was then used to implement the networks as

circuits of 5-input lookup tables. Note that Chortle-crf

is capable of implementing networks as circuits of K-

input lookup tables for values of K from 2 to 10.

Table 1 records the number of 5-input lookup tables

required to implement the networks in each of the four

experiments. The reconvergent optimization reduced

the total number of lookup tables required to imple-

ment the networks by 2.7 YO , and the replication opti-

mization reduced the total number of lookup tables by

3.7 %. Combining both optimizations reduced the total

number of lookup tables by 14 Yo.

The reduction achieved when using both optimiza-

tion together often exceeds the sum of the individual

reductions. This occurs when reconvergent paths that

cross fanout nodes are found and realized within a single

Paper 15.1
231

Network

z4ml

misexl

vg2

5xpl

count

9symml

9sym

apex7

rd84

e64

C880

apex2

alu2

duke2

C499

rot

apex6

alu4

apex4

des

total

-c

CLBS

5

14

20
23

32

50

52

48

52

48

75

94

94

88

84

134

169

165

457

714

2418

Chortle-crf

-cr

CLBS

5

14

19

20

31

42

44

45

52

48

70

90

86

87

84

129

161

144

451

695

2317

-Cf

CLBS

7

14

21

23

32

50

56

49

53

54

94

97

98

91

96

144

169

174

463

797

2582

-crf

CLBS

3

14

18

20

27

41

42

42

53

54

69

93

83

89

50

131

161

138

448

743

2319

Table 2: CLB Results

lookup table. A dramatic example is the network C499.

where using both optimizations reduces the number of

lookup tables by 55 %.

As an intermediate result the mis-pga technology

mapper produces a circuit of 5-input lookup tables

[Murg90a]. The sixth column of Table 1 records the

number of 5-input lookup tables in the circuits produced

by mis-pga [Murg90b]. In total, Ghortle-crf required

10 % fewer lookup tables than mis-pga to implement

the benchmark networks.

4.1 Xilinx CLBS

The Xilinx 3000 series of FPGAs uses lookup tables to

implement combinational logic [Hsie88]. These devices

contain an array of Configurable Logic Blocks (CLBS).

Each CLB can implement one 5-input lookup table or

two 4-input lookup tables as long as the total number

of distinct inputs to the CLB is less than or equal to 5.

A circuit of CLBS can be derived from each circuit of

5-input lookup tables by using one CLB to implement

each lookup table. The number of CLBS can be reduced

by finding pairs of lookup tables that fit inside a sin-

gle CLB. Finding the maximum number of such pairs

can be restated as a Maximum Cardinality Matching

problem [Murg90a] [Gibb85]. Table 2 records the num-

ber of CLBS in the circuits derived from the previous

Chortle-crf experiments.

Note that using only the replication optimization can

increase the number of CLBS in the derived circuit, even

when the optimization reduces the number of lookup

Network

z4ml

misexl

vg2

5xpl

count

9symml

9sym

apex7

rd84

e64

C880

apex2

alu2

duke2

C499

rot

apex6

alu4

subtotal

apex4

des

tot al

Chortle-crf I mis-pga

CLBS

3

14

18

20
27

41

42

42

53

54

69

93

83

89

50

131

161

138

1128

448

743

2319-

~

T
0.8 7

0.7 10
0.6 21

3.2 23

2.0 28

1
59.1 43

62.9 59

2.9 50
15.4 32

1.9 61

12.6 82

34.9 70

56.3 102

9.1 105

15.9 50

14.0 153

25.3 191

178.1 189

m

z

sec. 2

25.6

45.5

117.3

65.1

357.1

137.5

844.8

1376.8

xl
CLBS

6

12

20
19
32

56

52

51

38

65

101

102

91

99

121

166

198

232

OPT

sec. 1

296.5

298.2

299.7

301.1

301.9

901.2

305.1

304.6

303.2

901.5

1809.4

909.7

907.8

903.6

1847.0

1811.4

1822.6

1849.4

3ELE!I
m

‘execution times on a Sun 3/60

2 execution times on a VAX 8800

Table 3: CLB Results

node maytables. The replication of logic at a fanout

increase the number of inputs used at some lookup ta-

bles thereby precluding some pairings of lookup tables

into CLBS and reducing the maximum number of pairs

that can be found. If the reduction in the number of

pairs exceeds the reduction in the number of lookup ta-

bles then the replication will result in a net increase in

the number of CLBS.

Two other logic synthesis systems capable of im-

plementing networks as circuits of CLBS are mis-pga

[Murg90a] and the Xilinx proprietary design system

[Xili89]. Chortle-crf can be compared to these systems

on the basis of the number of CLBS in the final cir-

cuits and execution time. Table 3 records the number

of CLBS required to implement the benchmark networks

using Chortle-crf, mis-pga and Xilinx software. In to-

tal, Chortle-crf required 12 YO fewer CLBS than mis-pga

and 22 Yo fewer CLBS than XNFOPT to implement the

benchmark networks.

The table also records the execution times for

Chortle-crf on a Sun 3/60 and mis-pga on a VAX 8800

[Murg90a]. In the Xilinx design system technology

mapping is performed by the two programs XNFOPT

and XNFMAP [Xili89]. Note that XNFOPT will run

indefinitely and in these experiments limits were placed

on its execution time. The seventh column of Table 3

records the total execution time of the two programs

on a Sun 3/60. It should be noted that by conservative

Paper 15.1
232

estimate a VAX 8800 is twice as fast as a Sun 3/60.

Taking into account the relative speed of the Sun 3/60

and the VAX 8800, Chortle-crf is an average of 68 times

faster than mis-pga and 30 times faster than XNFOPT.

5 Conclusions

The bin packing approach to gate decomposition de-

scribed in this paper is up to 28 times faster than a pre-

vious exhaustive search approach. The improved speed

of gate decomposition makes it practical to consider lo-

cal optimizations that exploit both reconvergent paths

and replication of logic at fanout nodes.

Using both of these optimizations, Chortle-crf re-

quired 14 % fewer 5-input lookup tables than Chortle

[Fran90] and 10 % fewer lookup tables than mis-pga

[Murg90a] to implement a set of benchmark networks.

Chortle-crf is also capable of implementing networks

aa circuits of Xilinx 3000 series CLBS. To implement the

benchmark networks as circuits of CLBS, Chortle-crf re-

quired 12 YO fewer CLBS than mis-pga and 22 ‘?10 fewer

CLBS than XNFOPT. On average, Chortle-crf was 68

times faster than mis-pga

XNFOPT.

6 Future Work

and 30 times faster than

Currently, the optimizations exploiting reconvergent

fanout and replication of logic are evaluated locally,

There are, however, global interactions among these op-

timization. The search for reconvergent paths should

be extended to include those paths not found by the

local search. As well, realizing a pair of reconvergent

paths within a single lookup table may depend upon

the replication of logic at multiple fanout nodes.

There are cases where the optimizations requiring

replication of logic at different fanout nodes may be mu-

tually exclusive. A computationally tractable method

of determining which set of replications at fanout nodes

will result in the minimum number of lookup tables for

the entire network is needed.

References

[Ahre90]

[Bray86]

[Cart86]

[Detj87]

M. Ahrens, et aL, UAn FpGA Family optimized for

High Densities and Reduced Routing Delay,” Proc.

19!20 CICC, May 1990, pp. 31.5.1-31.5.4.

R. Brayton, et al., “Multiple-Level Logic Optimiza-

tion System~ Proc. ICCAD, Nov. 1986, pp. 356-

359.

W. Carter et al., “A user Programmable reconfig-
urable gate array? Proc. CICC, May 1986, pp 233-

235.

E. Detjens et. al, “Technology Mapping in MIS”,

Proc. ICCAD 87, Nov 1987, pp. 116-119.

[Fran90]

[Fran91]

[Gare79]

[Gibb85]

[Greg86]

[Hsie88]

[Kahr86]

[Keut87]

[Lisa87]

[Murg90a]

[Murg90b]

[Rose90]

[Xili89]

R. J. Francis, J. Rose, K. Chung, “Chortle: A

Technology Mapping Program for Lookup Table-

Based Field Programmable Gate Arrays: Proc.

27th DAC, June 1990, pp. 613-619.

R. J. Francis, “Technology Mapping for Lookup

Table-Based FPGAs,” Ph.D. Thesis in preparation,

University of Toronto, Department of Electrical En-

gineering.

M. R. Garey, D. S. Johnson, “Computers and

Intractability, A Guide to the Theory of NP-

Completeness,” W. H. Freeman and Co., 1979, pp.

124-129.

A. Gibbons, “Algorithmic Graph Theory,” Cam-

bridge University Press, 1985, pp. 125-133.

D. Gregory, et al., “Socrates: a system for au-

tomatically synthesizing and optimizing combin>

tion.?d logic,” Proc. 23rd DAC, June 1986, pp. 79-85.

H. Hsieh, et al., “A 9000-Gate User-Programmable

Gate Array,” Proc. 1988 CICC, May 1988, pp. 15,3,1

-15.3.7.

M. Kahrs, “Matching a parts library in a silicon

compiler,” IEEE ICCAD, 1986, pp. 169-172.

K. Keutzer, “DAGON: Technology Bindkg and Lo-

cal Optimization by DAG Matching,” Proc. 24th

DAC, June 1987, pp. 341-347.

R. Lisanke, F. Brglez, G. Kedem, “McMAP: A

Fast Technology Mapping Procedure for Multi-Level

Logic Synthesis? Proc. ICCD, Oct. 1988, pp. 252-

256.

R. Murgai, et al., “Logic Synthesis for Pro-

grammable Gate Arrays,” Proc, 27th DAC, June

1990, pp. 620-625.

R. Murgai, private correspondence.

J. Rose, R. J. Francis, D. Lewis, P. Chow, “Architec-

tures of Field-Prograrmnable Gate Arrays: The ef-

fect of Logic Block Functionality of Area Efficiency,”

IEEE Journal of Solid-State Circuits, Vol. 25, No.

5, Oct. 1990, pp. 1217-1225.

XACT LCA Development System, Vol. II, Xilinx

blC.. 1989.

Paper 15,1
233

