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Abstract
Human lives are composed by series of events and
activities. Considerable research effort has been made to
probe, sense, and understand them. In our research, we
are interested in exploring the intrinsic string that
connects all these events together, that is, user status and
transitions. Such transitions can be reflected from
multiple activity dimensions, ranging from our daily
mobility trajectories, app usage sequences, to
communication patterns and motion state switches. In
this paper, we aim to identify whether a personalized
model can be learned to capture various user states from
different sensing dimensions and whether a unified view
can be established to explain the state transitions that
drive the changes in user context during day-to-day
routines.

To this end, we have explored two types of traces –
connected wifi sequences and cell location trajectories.
We first model the states among these two individual
dimensions. In the end, the identified states from both
dimensions are linked together to recognize the
spatial-temporal relationship between them. As we
evaluate with the DeviceAnalyzer dataset, our method is
able to recognize a range of states such as “at home”,
“working”, “commute” and the trasitions between them,
all in an unsupervised manner.
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Introduction
Mobile devices have become an integrated and sometimes
even the central part of our daily routines. People bring
their devices to all types of locations and events - to
workplaces, to classrooms, to business meetings, to social
dinners, and to private parties. Aware of this opportunity,
considerable research effort has been spent to probe,
sense, and understand such events using observations
obtained from mobile devices [3, 5]. In our research, we
are interested in exploring the intrinsic string that
connects all these events together, that is, human status
and transitions. We believe that many of the activities
people take can be explained using the current status of
user as well as the transitions between the states.

Take daily routine activities as one example. Typical users
maintain a balance between their work and private life. At
workplaces, the main activities are centered around
professional matters - executing office work, attending
meetings, checking corporate emails, etc. All these
activities are associated with the user’s “working” state.
After work, the user may go to other places to enjoy
lunch, have a coffee break, or meet with friends – each
time the individual events can be viewed as related to
different leisure states. Then, the user may finally head
home and enjoy various family activities – potentially
relate to the “family life” state. Therefore, such “work”,
“family life”, and the different “leisure” states are
essentially different modes that a user exhibits and can be
used to summarize and predict related activities.
Moreover, the transitions between these states are also
valuable. By analyzing a user’s state transition pattern, a
system may identify that whenever she is leaving work on
Friday evening, she is more likely to go to a few favorite
dinner places. In other words, transitions can quantify
what the user tends to do next given the current state.

Besides daily routines, such states and transitions can be

observed from many other activity dimensions, ranging
from our mobility trajectories, app usage sequences, to
communication patterns and motion state switches. In
our work, we attempt to identify some of the most
common user states from multiple information sources.
Moreover, we aim to identify whether a personalized
model can capture the states that drive user actions
among all these different dimensions and more
importantly whether a unified view can be established to
explain all different dimensions together without having to
rely on individual models.

Realizing this vision entails many challenges. First of all,
the service needs to be light-weight to be running on the
phone. This means using readily available data without
additional retrieving cost and designing efficient algorithms
with affordable execution time. With these considerations,
we choose to use connected WiFi traces and cell location
information as the start point. For any smartphone today,
being a high-end flagship phone or a low-end one, the
network functionalities must be built in for WiFi and cell
tower connection. Therefore, these two data sources are
already widely available with little overhead. Second, the
service needs to identify semantic meanings without
requiring human labels. In the real world, asking for
manual labeling upfront demands much human effort and
often annoys the user. Our design aims to provide most
functionalities immediately and offer the opportunity to
refine with human assistance later. Finally, due to privacy
concerns, the service needs to function with anonymized
data – for example, hashed cell IDs and WiFi names.
Mobile users today are becoming more privacy-aware.
Showing that the service respects their privacy in treating
their data can help boost the acceptance of the service.

With these design requirements in mind, we present a
series of methods to process and analyze connected WiFi
traces and cell location sequences. In the end, we are able
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to identify different user states such as “at home”,
“working”, “commute”and other user-specific significant
states like “lunch” or “dining”. A Hidden Markov Model
is then used to model the transitions for each user and we
show that various insights can be extracted.

Associate Semantics with Connected WiFi
The first step starts with analyzing connected WiFi traces.
In the analyzed data set 1, users on average only connect
with 10 WiFi access points (AP) during the entire study.
This is because, though WiFi APs are available
everywhere, most of them are password-protected from
the public. Connecting to them requires the users’ effort
of inputing password and cautiously switching on/off WiFi
to save energy. As a result, the APs that a user connects
to usually represent meaningful places in her life - home,
work, friends’ place, favorite diners, etc. Our algorithm
attempts to extract these information.

Using a similar approach as described in [1], we start by
partitioning 24 hours of a day into eight uneven time
windows as shown in Figure 1. These windows are
designed to capture natural user behaviors such as
sleeping, commuting, working, and dining. Later we show
that a dynamic partition can be used to further optimize
the performance.

Figure 1: Initial time partition.

Then, our algorithm counts the number of appearances of
each WiFi AP in each time window across the entire
trace. The result is a N × 8 matrix, where N is the
number of APs. Then, a dual representation of the

1Due to limited computation power, 300 users with 30MB to
300MB data are randomly selected for processing.

appearances is computed by normalizing each column
(Time window (TW) view) and each row of the matrix
(AP view). Figure 2 illustrates the results for a sample
user’s 8-month trace with rows denoting unique WiFi APs
and columns showing time windows. The red color means
probability close to 1 and the blue color corresponds to 0.

Figure 2: Use dual representations to identify (left, TW view)
home, work and (right, AP view) other semantics. Blue to red
denotes lower to higher probabilities.

The left TW view shows what the most frequent APs are
during each time window while the right AP view shows
which time window occurs the most for each AP.
Interestingly, from the left figure, AP1 almost dominates
time window 1, 2, 3, 7, and 8 - including morning and late
night hours. These windows correlate with typical “home
staying” behavior of most people. In contrast, AP2
dominates time window 4, 5, 6 and also shows up at 3 -
typical working hours. Therefore, we make initial guesses
here that AP1 and AP2 correspond to home and work
AP respectively. For other APs, the right figure shows
insights about what they might be. AP3, AP4 and AP5
are most correlated with window 7, 2, and 5 - common
dining hours for dinner, breakfast, and lunch. Actually,
AP4 appears across three time slots and could be a
dining place that the user goes for different meals.

Notice that, user behaviors may differ – the initial time
partition may not be applicable to everyone. The next
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task is to dynamically change the time window boundaries
to maximize the concentration of APs’ appearances in
each matrix in Figure 2 – e.g., make only AP1 appear
during home hours. To measure such concentrations, we
use a metric C similar to total variation – defined as

C(X) =
∑
i

(xi+1 − xi)
2 (1)

for each sorted probability mass function (PMF) for the
columns in TW view and rows in AP view respectively.
The metric measures whether one or a few elements in a
PMF collectively contains most of the probability mass
and equals 1 when one time window captures all the
appearances. Using this metric, we can test different time
partition schemes corresponding to shifting time window
boudaries earlier and later. For the same sample user,
Figure 3 shows C across 11 different settings. Setting 10
(late dinner) is a clear winner for AP3 and AP5 as most
of their appearances are captured by one or few time
windows.
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Figure 3: Concentration metric under different time settings.

After identifying optimal time partitions and associating
semantic meanings with APs, we use a 3-state hidden
markov model to represent the observed daily sequences.
Unsurprisingly, Baum-Welch algorithm returns with AP1
and AP2 associating with 2 different states and other APs
with the 3rd state. The transitions show that with 1/23

chances the user goes somewhere else after work rather
than going home directly and rarely returns to work after.

While connected WiFi is highly correlated with significant
places, unfortunately, the user is connected only for a very
limited period of time. On average, a user is connected to
WiFi only 10.6% of the time. Therefore, relying on
connected WiFi alone results in sparse and interruptive
observations. To address this issue, we use cell sequences
to fill in the gaps.

Fill in the Gap with Cell Locations
On contrary to connected WiFi, smartphones are almost
always connected to cell towers for communication
purposes. In analyzed traces, average users are connected
to cell towers three times more than WiFi. We expect this
is even an underestimate due to turning off phones and
stopping DataAnalyzer. However, processing cell
sequences is more challenging for several reasons. First of
all, a cell sector can cover a large area so that a moved
user may still stay within the same sector. Moreover, due
to signal strength fluctuations, a user may observe cell
tower handovers without physical movement. As a result,
cell sector changes do not necessarily coincide with
location changes. Compounding this problem, the number
of unique cell IDs appearing in a trace (on avg. 1047) is
significantly more than WiFi. Their correlation with time
windows is also too weak for the most frequent cell
sectors. Figure 4 illustrates this issue for the sample user.
The top figure shows that more than two thousand cell
IDs have appeared during the eight months and their
appearances follow power-law distribution. However, the
top cell sectors’ appearances only weakly correlate with
time windows as illustrated in the bottom figure. Most of
the top 20 cells’ apperance scatter across time windows,
making the same treatment of WiFi sequence unfeasible.

Our solution is to propagate information learnt from WiFi
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to cell. Connecting WiFi and Cell traces together, our
algorithm identifies the correlation between WiFi APs and
cell IDs by analyzing their co-occurance pattern.
Specifically, we are interested in whether a cell ID mainly
appears with certain WiFi APs for which the semantic
meaning is learnt previously. Interestingly, after
normalization and processing, some of the most frequent
cells show such strong correlation with WiFi as illustrated
in Figure 5 for the sample user. Each column in the figure
denotes the probability a cell appear at the same time
with a WiFi AP among its appearance with all WiFi APs.
1 (red) means whenever the cell appears with an AP, the
AP is the same one. Therefore, the high-value grids mean
that some cells are found to be strongly related to certain
APs so that we can associate the states (e.g., at home,
working, etc.) found from APs to these cells.
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Figure 4: Cell appearances follow power-law distribution and
only weakly correlate with time windows.

Another interesting property of cell sequences is its

correlation with commute patterns [2]. Figure 6 shows the
CDF of observed handovers during each half-hour in the
sample user’s entire trace. Intuitively, more observed
handover may correspond to higher mobility.
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Figure 5: Co-occurance between WiFi and top cells.

Therefore, our algorithm selects a percentile as commute
threshold using two criterions. First of all, it minimizes
the detected commute during 0 to 5 AM since these are
not typical commute hours. Second, it fits the data into a
2-state Gaussian Mixture Model, assuming typical users
exhibit two home-to-work commutes per weekday, and
attempts to identify a good fit. The identified number of
commutes is shown in Figure 7. The false positives during
0 to 5 AM is suppressed and GMM identifies the two
commute peaks (µ) at 10:20 AM and 7:40 PM
respectively. In the future, our algorithm needs to
accomodate other user types such as those living close to
office or working from home.
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Figure 6: CDF of handovers in half an hour.
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Figure 7: Commutes in the trace at different times.

Piecing all these clues together, Figure 8 shows the
aggregated state information identified for the sample
user. The x-axis shows the hour of the day and the y-axis
counts how likely the user is observed at certain state. For
the 265-day trace of this user, 530 observations are made
for each hour (two per hour) of the day. The color coded
states (from bottom up) corresponds to commute, no
network record, home, work and others, respectively. Her
working hour can be from 9 AM to mid-night and she is
mostly at home during the evenings and in the morning.

Figure 8: Identified states across hour of a day.

Using these identified states, we are able to compute the
transition probability across all users in the 300-user
dataset. On average, even on weekdays, users choose to
go somewhere else after work with a probability of 56.8%,
slightly more frequently than going home directly
(43.2%). After spending time around, unsurprisingly, they
choose to go home most of the time with a 92.7%

probability but do continue to work from time to time
(7.3%). Moreover, typical users commute twice a day
around 8:24 AM and 6:10 PM (average) and a user’s
commute patterns may typically vary within a 1.5 to
2-hour range. This large variation in day-to-day behavior
illustrates the advantage of sensing user states over using
a fixed daily schedule all the time. Interestingly, the
results are also consistent with U.S. census results [4],
showing potentially common behavior patterns across
large populations even within different regions.

Conclusion
Mobile phones are transforming to converged platforms to
sense the human life. The observations are proven to be
invaluable to various industries such as healthcare, city
planning, customized search, targeted advertisement, and
personal assistance. This paper explores identifying
semantically meaningful states and transitions by
combining readily available WiFi and cell tower traces.
The algorithm mainly draws from common sense
knowledge and relies on analyzing distributions in an
unsupervised manner, thus does not require human
labeling effort. In the future, we plan to expand the
exploration into even more sensing dimensions, model
behavior patterns as topics, and build the service into next
generation of mobile platforms.
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