
Protecting Your Children from Inappropriate Content in
Mobile Apps: An Automatic Maturity Rating Framework

Bing Hu
Samsung Research America
binghu2006@gmail.com

Bin Liu
Rutgers University

binben.liu@rutgers.edu

Neil Zhenqiang Gong
ECpE, Iowa State University
neilgong@iastate.edu

Deguang Kong
Samsung Research America
doogkong@gmail.com

Hongxia Jin
Samsung Research America

hongxia.jin@samsung.com

ABSTRACT
Mobile applications (Apps) could expose children or adoles-
cents to mature themes such as sexual content, violence and
drug use, which harms their online safety. Therefore, mobile
platforms provide rating policies to label the maturity levels
of Apps and the reasons why an App has a given maturity
level, which enables parents to select maturity-appropriate
Apps for their children. However, existing approaches to im-
plement these maturity rating policies are either costly (be-
cause of expensive manual labeling) or inaccurate (because
of no centralized controls). In this work, we aim to design
and build a machine learning framework to automatically
predict maturity levels for mobile Apps and the associated
reasons with a high accuracy and a low cost.

To this end, we take a multi-label classification approach
to predict the mature contents in a given App and then label
the maturity level according to a rating policy. Specifically,
we extract novel features from App descriptions by leverag-
ing deep learning techniques to automatically capture the
semantic similarity between words and adapt Support Vec-
tor Machine to capture label correlations with pearson cor-
relation in a multi-label classification setting. Moreover, we
evaluate our approach and various baseline methods using
datasets that we collected from both App Store and Google
Play. We demonstrate that, with only App descriptions,
our approach already achieves 85% Precision for predicting
mature contents and 79% Precision for predicting maturity
levels, which substantially outperforms baseline methods.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining ; H.4 [Information Systems Applications]:
Miscellaneous

General Terms
Algorithms, Measurement, Experimentation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CIKM’15, October 19–23, 2015, Melbourne, VIC, Australia.
c© 2015 ACM. ISBN 978-1-4503-3794-6/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2806416.2806579.

Figure 1: The mature contents and maturity levels of
three Apps on App Store.

Keywords
Mobile Apps; Content Rating; Text Mining; Deep Learning;
Pearson correlation.

1. INTRODUCTION
Mobile devices are becoming more and more popular in

the past few years. However, Apps could expose children or
adolescents to mature themes such as sexual content, vio-
lence, and drug use, which are harmful to their growth and
development. Indeed, research from psychology has long es-
tablished that teenagers who are exposed to content that
glamorizes drug use, sex, or violence tend to engage in those
activities themselves [27, 13, 28].

Therefore, similar to the conventional video game and
movie industry, mobile platforms provide mechanisms to
rate the maturity levels of Apps, which enables parents to
select maturity-appropriate mobile Apps for their children.
For instance, App Store has a maturity rating policy, which
consists of four maturity levels, i.e., 4+, 9+, 12+, and 17+.
Apps with different maturity levels are suitable for users
with different ages, e.g., Apps with 17+ maturity level are
appropriate for users who are at least 17 years old. In ad-
dition to the maturity level, App Store also identifies the
detailed mature contents which make an App be rated as a
specific maturity level. These mature contents are helpful
for users to better understand the App, and to guide devel-
opers to modify their Apps in order to increase their audi-
ence population. For instance, Figure 1 shows the mature

Figure 2: Inconsistency of maturity ratings for the same
app in App Store and Google Play.

contents and maturity levels of three Apps on App Store.
Google Play also establishes a rating policy that includes
four maturity levels, i.e., Everyone, Low Maturity, Medium
Maturity, and High Maturity, and they are corresponding to
the four maturity levels on App Store.

Existing approaches to implement these maturity rating
policies are either costly or inaccurate. Specifically, Apple
Inc. hires employees to manually examine each submitted
App in order to identify its maturity level and the associ-
ated reasons. Given the large amount of new Apps, e.g.,
20,000 new Apps were submitted to App Store per month
as of 2014 [2], this manual labeling approach is very costly
and time-consuming. Unlike the centralized rating service
provided by App Store, Google Play requires developers to
label the maturity levels for their own Apps according to
the Google Play’s rating policy. These self-reported matu-
rity levels are determined at the time when developers sub-
mit their Apps to Google Play and remain unchanged un-
til users report inappropriateness. Although Google Play’s
strategy is scalable and less costly, the maturity ratings re-
ported by developers could be inaccurate. Moreover, var-
ious reports [15, 25] have shown growing concerns among
parents who have experienced inaccurate maturity ratings
of Apps. Figure 2 shows an example of the mislabelling of
the maturity ratings by the Android developers. Chen et
al. [5] rated the maturity of apps using a keyword match-
ing method through manual identification of the sensitive
words that are highly correlated with apps’ maturity in App
descriptions. Their method achieves limited labeling accu-
racy because it does not consider the semantic meanings of
words. Moreover, their method cannot produce evidences
about why an App has a worse rating than another one.

In this work, we aim to design a scalable framework that
automatically labels App maturity level and the associated
reasons accurately. Our framework, called Automatic App
Maturity Rating (AAMR), takes a rating policy and the de-
scription of an App as input, and predicts the mature con-
tent in the App and the maturity level of the App. We
choose App description because it describes the content and
functionality of an App, and thus it is a good indicator of
the mature content (if any) in the App. However, App de-
scription based rating analysis faces several challenges:
� Apps often have short and concise descriptions in order

for users to quickly understand the Apps.
� Natural languages are ambiguous, i.e., the same word or

phrase has different meanings at different contexts; and nat-

ural languages have synonyms, i.e., the same mature theme
can be expressed with different words or phrases.
� Mature contents are correlated, i.e., some mature con-

tents are likely to co-occur in Apps while some mature con-
tents are mutually exclusive.

To address these challenges, we propose a two-stage ma-
chine learning approach to first predict the mature contents
and then label the maturity levels. Specifically, we extract
novel features from App descriptions. In particular, we use
word to vector model [23, 24], which leverages deep learn-
ing technique to automatically capture the semantic simi-
larity between words; to mitigate the language ambiguity,
we use the bag-of-words feature to capture the context and
global word distributions. With these features, we map the
mature-content prediction to be a multi-label classification
problem and we adapt SVM to capture label correlations.
We choose Support Vector Machine (SVM) [7] for rating
prediction since it was shown to outperform other classifiers
for short text analysis [11]. We evaluate our approach and
various baseline methods using large-scale datasets that we
collected from both App Store and Google Play. We demon-
strate that, using only App descriptions, our approach can
already achieve 85% Precision on maturity content predic-
tion and 79% Precision on maturity level prediction, and
our approach substantially outperforms baseline methods in-
cluding both automatic and human-labeling approaches.

The key contributions are summarized as follows:

• We propose a machine learning framework, called Au-
tomatic App Maturity Rating (AAMR), to automati-
cally predict mature contents and label maturity levels
accurately. To the best of our knowledge, this is the
first systematic study about automatic maturity rat-
ing for mobile Apps.

• We extract novel features from App descriptions by
leveraging deep learning techniques. Moreover, we adapt
standard SVM as a multi-label classifier to capture la-
bel correlations using pearson correlation.

• We comprehensively evaluate our approach and other
baseline methods using large-scale real-world datasets
that we collected from both App Store and Google
Play, and we show that our approach substantially out-
performs baseline methods.

2. BACKGROUND AND DESIGN GOALS
In this section, we first introduce the maturity rating poli-

cies adopted by App Store and Google Play, and then we
discuss the limitations of current approaches to implement
the policies, which is followed by our design goals of our
automatic App maturity rating system.

2.1 Two Maturity Rating Policies
App Store’s Rating Policy: Table 1 shows the rating
policy of App Store [16]. In this policy, Apps are classified
into four categories, i.e., 4+, 9+, 12+, and 17+. Apps with
the maturity level of 17+ are appropriate for users who are
at least 17 years old. The maturity level of an App is related
to the following mature contents: violence, sexual/maturity,
profanity/humor, alcohol/drug/tobacco,etc. Moreover, dif-
ferent intensity of mature contents results in different matu-
rity levels. For example, an App is rated as 9+ if it contains

Table 1: App Store Maturity Rating Policy

Content Level Rating #

realistic violence
Infrequent/mild 9+ 1
Frequent/intense 12+ 2

cartoon/fantasy violence Frequent/intense 9+ 3

horror-themed content
Infrequent/mild 9+ 4
Frequent/intense 12+ 5

profanity/crude humor
Infrequent/mild 9+ 6
Frequent/intense 12+ 7

sexual content/nudity
Infrequent/mild 12+ 8
Frequent/intense 17+ 9

mature/suggestive content Frequent/intense 17+ 10

alcohol/tobacco/drug
Infrequent/mild 12+ 11
Frequent/intense 17+ 12

gambling/contests — 17+ 13
simulated gambling — 12+ 14

treatment-focused content
Infrequent/mild 12+ 15
Frequent/intense 17+ 16

unrestricted web access — 17+ 17
— — 4+

infrequent or mild “realistic violence”, but it is rated as 12+
if the realistic violence is frequent or intense.

Google Play’s Rating Policy: Similar to App Store,
Google Play’s policy also consists of four maturity levels.
However, unlike App Store’s policy whose maturity levels
are directly related to numeric ages, Google Play’s four lev-
els are everyone, low maturity, medium maturity, and high
maturity [1]. Table 2 illustrates Google Play’s rating policy.

Comparing the two policies: We note that the two
policies are equivalent under some conditions [5], i.e., some
Apps have the same maturity level under the two rating
policies. For instance, an App with only frequent profanity
is labeled as 12+ by the App Store’s policy and medium by
the Google Play’s policy, respectively. Thus, 12+ in the App
Store’s policy is equivalent to medium in the Google Play’s
policy for this App. Table 3 shows the mappings between
Google Play’s maturity levels and the App Store’s maturity
levels. The conditions for such mappings were discussed and
obtained by Chen et al. [5]. However, App Store and Google
Play treat different content as mature. For example, Google
Play adopts “hate” and “location” as mature, but these con-
tent is not considered by App Store. Moreover, Google Play
also considers the intensity of mature content when labeling
maturity levels, but the definition of intensity is a slightly
different from that of App Store. In our experiments, we will
use these conditions to obtain groundtruth mature contents
and maturity levels of Google Play Apps.

2.2 Limitations of Existing Rating Policy Im-
plementations

An implementation of a policy is to label the maturity
level of an App according to the rating policy. Existing im-
plementations adopted by App Store and Google Play are
either costly or inaccurate. On App Store, Apple Inc. hires
trained employees to comprehensively evaluate each submit-
ted App to label its maturity level, and such evaluations
could include meta-data (e.g., App description, icon, and
screenshots of the App) analysis and code analysis. Given
the large amount of new Apps, e.g., 20,000 new Apps were

Table 2: Google Play Maturity Rating Policy

Content Level Rating #

violence

mild cartoon low 1
fictional violence low 2
realistic medium 3
intense fictional medium 4
graphic high 5

profanity/crude humor frequent/intense medium 6
hate inflammatory cont. medium 7

sexual/suggestive
include medium 8
focus high 9

alcohol/tobacco/drug
reference medium 10
focus high 11

gambling themes — medium 12
simulated gambling — medium 13

location
access low 14
publish/share medium 15

UGC/social
host medium 16
focus medium 17

— — everyone

Table 3: Mappings between maturity levels in Google
Play and App Store

Maturity Levels Google Play App Store
1 Everyone 4+
2 Low Maturity 9+
3 Medium Maturity 12+
4 High Maturity 17+

submitted to App Store per month as of 2013 [2], this man-
ual labeling approach is very costly and time-consuming.

Unlike the centralized rating service provided by App Store,
Google Play requires developers to label the maturity levels
for their own Apps according to the Google Play’s rating
policy. Although Google Play’s strategy is scalable and less
costly, the maturity ratings reported by developers could
be inaccurate. For instance, in our dataset collected from
Google Play, 45% Apps have incorrect developer-provided
maturity levels.

2.3 Design Goals
To overcome the limitations of existing policy implementa-

tions, we propose an automatic App maturity rating frame-
work. We have the following design goals for such a frame-
work.

Policy Independent: Different platforms could have dif-
ferent rating policies. For instance, although Google Play’s
policy and App Store’s policy are equivalent in some cases,
they are different in general. Therefore, we aim to design
our framework independent of policies. In other words, the
input of our framework includes the specifications of a pol-
icy, and our framework produces the maturity level of an
App under this policy.

Mature Contents to Support Maturity Levels: Pre-
dicting the mature contents in an App help users better
understand the App and guide developers to modify their
Apps in order to increase the number of potential users. For
instance, an App is labeled as 17+ by App Store because of
frequent sexual content. The developer could decrease the
number of dirty words so that it is labeled as 12+, which
makes people whose ages are between 12 and 17 years old

App description

Multi-label classification
with label correnation

New App

Prediction
model

Prediction
model

Maturity
contents

Maturity level

Off-line leaning On-line prediction

User
interface

User
interface

Bag of
words

Word2Vec

Feature extraction

Sensitive
word

Figure 3: Overview of Automatic App Maturity
Rating (AAMR) framework.

potential users of this App. Therefore, we aim to design
our framework to give both the maturity levels and also the
maturity words that support our rating.

Scalable and Accurate: Given the large number of new
submitted Apps per month, we aim to design our framework
to be scalable. In particular, our framework should produce
maturity analysis results for Apps immediately after they
are submitted. Moreover, our framework should produce
the maturity analysis results with a high accuracy.

3. AUTOMATIC APP MATURITY RATING
(AAMR) FRAMEWORK

3.1 Overview
Figure 3 illustrates the machine learning framework for

automatic App maturity rating. In the off-line learning
phase, we extract features from App descriptions and learn
a multi-label classifier to predict the mature content in a
given App. In the on-line prediction phase, our framework
performs maturity rating in a two-stage approach, i.e., we
first use the learned multi-label classifier to predict mature
content in a new App and then label the maturity level ac-
cording to the given rating policy.

We extract our features from sensitive words in maturity
rating policies that directly refer to mature content, aug-
mented sensitive words that are semantically similar to sen-
sitive words, and bag-of-words model. Natural languages
have synonyms, e.g., different words could represent the
same mature content. Thus, we use augmented sensitive
words that are synonyms of sensitive words to enrich our
features. We obtain augmented sensitive words via recent
word-to-vector techniques [24][23]. Specifically, a word-to-
vector algorithm learns a vector representation for each word
from a corpus of text, and two words are semantically similar
if they have close vector representations. Moreover, natural
languages are ambiguous, e.g., a sensitive word in an App
description might not indicate that the App has mature con-
tent. Therefore, we use bag-of-words model to capture the
context of sensitive words to mitigate the ambiguity issue.

We find that mature contents are correlated, i.e., some
mature contents have very high co-occurrences in App de-
scriptions. Therefore, we adapt multi-label Support Vec-
tor Machine (SVM) [7] to capture such correlations. We
choose SVM because App descriptions are short and previ-
ous work [6] showed that SVM outperforms other classifiers
for short text classification.

In the next few subsection, we will illustrate each compo-
nent in more details.

3.2 Feature Engineering and Learning
We extract features from sensitive words in rating policies,

augmented sensitive words that are semantically similar to
sensitive words.

3.2.1 Extracting Sensitive Words
A maturity rating policy has clear definitions on maturity

content. Therefore, we extract sensitive words from a rating
policy that directly refer to mature content. For instance,
the list of sensitive words we extract from the App Store’s
rating policy shown in Table 1 include violence, horror, hu-
mor, profanity, sex, nudity, mature, alcohol, tobacco, drug,
gambling, and treatment, etc. We note that the list of sen-
sitive words could be different for different rating policies
because they could treat different contents as mature. For
instance, Google Play also defines hate as mature content
while App Store does not. We use binary features to rep-
resent sensitive words. Specifically, a feature has a value
of 1 if the corresponding sensitive word appears in an App
description, otherwise the feature has a value of 0.

Chen et al. [5] proposed to take these sensitive words as
features and use them to directly learn a classifier to pre-
dict the maturity levels of Apps. The keyword-matching
method, however, suffers from two limitations. First, nat-
ural languages have synonyms, e.g., battle is semantically
similar to violence. Keyword-matching will miss these syn-
onyms, which results in high false negatives. Second, natural
languages are ambiguous, e.g., that a sensitive word appears
in an App’s description does not necessarily mean the App
contains the corresponding mature content, which results in
false positives. To address these limitations, we leverage fea-
ture augmentation to consider words that are semantically
similar to sensitive words to capture the context.

3.2.2 Augmenting Features via Deep Learning
We first show an example to illustrate the issues intro-

duced by synonyms. The following is a part of the descrip-
tion of an App named “Injustice: Gods Among Us”:

Build an epic roster of DC heroes and villains and get

ready for battle! INJUSTICE: GODS AMONG US

is a free-to-play collectible card game where you build

a roster of characters, moves, powers, and gear and

enter the arena in touch-based 3-on-3 action battle.

fight: Use the touch screen mechanics of your mobile

device to combat your enemies in 3-on-3 action...

In the above description, there are several words (shown in
bold) strongly indicating violence content which is not suit-
able for children under a certain age. However, the sensitive
words cannot represent such mature content. To address
this problem, we leverage word-to-vector (word2vec) tech-
niques developed by Google [24, 23] to augment sensitive
words with semantically similar words.

Table 4: Top-10 words that have the highest similarities
with the sensitive word sex.

word cosine similarity

offend 0.4686
nudity 0.4333

intimate 0.4023
flirt 0.3612

wanted 0.3593
men 0.3326
adult 0.3323
hot 0.2974

confession 0.2898
position 0.2859

A word2vec algorithm learns a vector representation for
each word from a corpus of texts in an unsupervised setting.
These vector representations capture a large number of pre-
cise semantic word relationships. Specifically, two words are
treated as semantically similar if they have close vector rep-
resentations. As a word embedding technique, word2vec,
can be viewed as a representational layer in a deep learn-
ing [4] architecture which transforms a word into a posi-
tional representation of the word relative to other words in
the training dataset, where the position is represented as a
data point in the new vector space.

In experiment, in order to get“semantic”meaning of words,
we run the word2vec tool [32] using the app descriptions
from more than 350,000 Apps in Google and App Store.
For instance, Table 4 shows the top-10 words that have the
highest similarities with the sensitive word sex. The simi-
larity between two words is defined as the cosine similarity
of the two corresponding vector representations.

For each sensitive word, we choose the top-200 words that
have the highest cosine similarities, and we call these words
augmented sensitive words. Note that some words might ap-
pear more than once in our augmented sensitive words be-
cause they might be similar to more than one sensitive word.
Suppose we have n augmented sensitive words, we extract a
feature vector with length n for each App. Specifically, if an
augmented sensitive word appears in an App’s description,
the corresponding feature has a value that equals the cosine
similarity between the augmented sensitive word and the
corresponding sensitive word, otherwise the corresponding
feature has a value of 0.

3.2.3 Bag-of-words
Given that the text data is very sparse, in some cases,

App descriptions do not contain any sensitive word or aug-
mented sensitive word. Moreover, whether a sensitive or
an augmented sensitive word really indicates mature con-
tent depends on the context. Therefore, we further extract
bag-of-words features from App descriptions.

We adopt term frequency-inverse document frequency (TF-
IDF) to weight each word. TF-IDF is widely used in infor-
mation retrieval and text mining [22, 30, 33]. The TF-IDF
weights evaluate how important a word is to a document
in a corpus of documents. Specifically, the TF-IDF weight
of a word is composed by two parts. The first part com-
putes the normalized Term Frequency (TF) and the sec-
ond part is the Inverse Document Frequency (IDF). For-
mally, the TF-IDF weight of a word is calculated as follows,
wi,j = TFi,j × log(N

DFi
), where TFi,j is the term frequency

of ti in document dj , N is the total number of documents in
the corpus, and DFi is the total number of documents that
contain ti.

3.2.4 Feature Concatenation
We concatenate the features extracted from sensitive words,

augmented sensitive words, and bag-of-words model. For the
sensitive word features, we extract twelve sensitive words
from the App Store policy and thirteen sensitive words from
the Google Play policy. For each sensitive word, we have the
top-200 words with the highest cosine similarity. We use the
most frequent 2000 words for the bag-of-words features. In
total, we have 4,412 features for Apps on App Store and
4,613 features for Apps on Google Play.

3.3 Multi-label Classification
After feature extraction and feature learning from apps’

descriptions, the next step is to build a machine learning
classifier that can automatically classify an app into its cor-
responding maturity level.

More formally, let xi ∈ <p be the p-dimensional feature
vector carried by each App i. Let yi ∈ {0, 1}C be the C-
dimensional binary vector denoting the maturity contents
for App i. Then Y = [y1,y2, ...yn] corresponds to the ma-
turity contents for all the apps. Furthermore, let z ∈ <n
be the set of the maturity levels of the mobile Apps, where
z = [z1, z2, ...zn] and zi is the maturity level for each App i.
More specifically, the mature content is defined by a matu-
rity rating policy. For instance, both App Store and Google
Play define 17 different mature contents, which are shown
in Table 1 and Table 2, respectively, and yi indicates what
kind of mature content among the 17 contents the App i
contains.

3.3.1 Key Idea
In the off-line training phase, we have a set of training

mobile App data L = (x1,y1, z1), (x2,y2, z2), ...(xn,yn, zn)
where xi is a feature vector extracted from an App descrip-
tion, yi is the binary label vector indicating the maturity
content, and zi is the label of the maturity level, where
1 ≤ i ≤ n.

In the on-line prediction phase, we perform maturity anal-
ysis in a two-stage approach, i.e.,

App description(x)→ maturity content(y)→ maturity level(z),

where in the first stage, the maturity contents is inferred
from the app feature vectors, and in the second stage, the
maturity level is predicted by combining maturity content
based on the rating policy. For instance, if every element in
y is zero, then the App has the lowest maturity level (i.e.,
4+ on App Store and Everyone on Google Play).

Note in this procedure, an app is generally assigned to
multiple (i.e., one or more) maturity content tags. This is
known as “multi-label learning” in machine learning. Fortu-
nately, we develop a method that can automatically adapt
SVM to support multi-label classification by incorporating
label correlations, with minimum efforts.

3.3.2 Multi-label Classification Using Linear SVM
As is illustrated before, to support multi-label classifica-

tion task, we need to develop a method that is fast, scalable,
and accurate. Linear classification method is a good fit to
achieve these goals given the large number of new Apps and

Figure 4: Correlation matrix for 11 types of matu-
rity content, where (k, `) element indicates the cor-
relations between the tag k and `. For illustration
purpose, infrequent/mild and frequent/intensive are
grouped together.

their meta data. Hence, in the context of app maturity level
prediction, we use linear SVM as our method due to its
strong capability in handling short text classification tasks
such as [34, 29, 35, 11]. This is also further confirmed by
our experiments.

Recall that in standard multi-class SVM problem, it finds
the maximum-margin hyperplane [8] that has the largest
separation (margin) among data points from different classes.
To be exact, it optimizes:

min
wk,ξi

1

2

K∑
k=1

wT
k wk + C

n∑
i=1

ξi

s.t. wT
yixi −wT

k xi ≥ 1− ξi,
n∑
i=1

ξi ≤ C, ξi ≥ 0, (1)

where wk is the decision hyperplane for k-th class (1 ≤ k ≤
K), yi is the label for data xi, ξi is the slack variable, and
C is the constant. According to “Loss + Regularization”
format, Eq.(1) can be written as a sum over of a hinge loss
and `2 regularization, i.e.,

min
W

n∑
i=1

(1−wT
yixi + max

k 6=yi
wT
k xi)+ + α

K∑
k=1

‖wk‖22, (2)

where (x)+ = max{x, 0}, W = [w1w2 · · ·wK] is the hyper-

plane matrix. Let Ω(W) =
∑K
k=1 ‖wk‖22, Eq.(2) is equiva-

lent to:

min
W

f(W; X,Y) + αΩ(W), (3)

where f(W; X,Y) =
∑n
i=1(1−wT

yixi + maxk 6=yi wT
k xi)+.

3.3.3 Adapting SVM for Label Correlations
To support multi-label classification, the idea is to trans-

form the multi-label classification problem into multi-class
problem by considering label correlations. The key obser-
vation is that many tags always co-occur together. The in-
tuition is that the elimination of label correlations can help
improve the performance, which is also confirmed in past
researches [9][36][19].

In the context of maturity content rating, the two rating
policies, which are shown in Table 1 and Table 2, both con-
sider seventeen maturity content for maturity rating. Fig-
ure 4 shows the correlations among the maturity content
considered by the App Store’s rating policy. The figure

was plotted based on the statistics from the real-world app
dataset used in experiments. For illustration purpose, we
combine the infrequent/mild and frequent/intense levels for
the same maturity content together. However, we still treat
the infrequent/mild and frequent/intense as two labels in
our experiments.

We observe that there exists high correlations among some
maturity content. For example, the profanity or crude hu-
mor and the mature/suggestive themes are highly positively
correlated. Another example is that the cartoon or fan-
tasy violence and horror/fear theme are highly positively
correlated. In addition to the highly positive correlations,
some maturity content are negatively correlated. In par-
ticular, the two levels of a maturity content are exclusive
(i.e., perfectly negatively correlated). For instance, for the
App shown in Figure 1.left, one of its maturity content is
infrequent/mild sexual content and nudity, and thus fre-
quent/intense sexual content and nudity will not be a ma-
turity content of this App. The above observations moti-
vate us to utilize correlations between maturity content to
improve the accuracy of classification.

We adapt the standard multi-label SVM to capture label
correlations. In particular, we use pearson correlation coeffi-
cient R = [Rk`] ∈ <K×K to capture the label co-occurrence,
i.e.,

Rk` =

∑n
i=1(Yik − Y:k)(Yi` − Y:`)√∑n

i=1(Yik − Y:k)2
√∑n

i=1(Yi` − Y:`)2
, 1 ≤ k, ` ≤ K, (4)

where Y ∈ <n×K is the class label matrix for maturity con-
tent, and

Y:k =
1

n

n∑
i=1

Yik, Y:` =
1

n

n∑
i=1

Yi`.

The label correlation matrix R measures the linear correla-
tion (dependence) between each pair of classes k and `, each
entry of which is a number in the interval [-1, +1]. Positive
number indicates positive correlation, 0 indicates no correla-
tion, and negative indicates negative correlation. We would
like to emphasize here that without the centering of the val-
ues corresponding to each label, it is impossible to capture
the negative correlations.

Then the class label matrix is modified to:

Ỹ = YR, (5)

and finally we solve the following optimization problem Eq.(6)
using the same method as in Eq. (3):

min
W

f(W; X, Ỹ) + αΩ(W). (6)

Please note that our method can be applied to any generic
loss functions such as logistic loss, LASSO, etc, but not lim-
ited to hinge loss shown in Eq.(6). The pearson correlation
is indeed a generic method to eliminate both the label cor-
relations and the feature correlations, which can be easily
adapted to solve many other correlation problems emerged
in data mining and machine learning communities.

Here, we give an example to illustrate how Y looks like.
Suppose we have the class label corresponding to app i, Yi: =
[0, 1, 0, ...0, 0, 1]. After multiplying the correlation matrix

R ∈ <k×k, Yi: becomes Ỹi: = [0.1, 0.75, 0.6...0.2, 0.5,−0.9].
Using the threshold calibration in [36], we obtain a threshold

t in the training phase for mapping the continuous Ỹik to

Figure 5: The distribution of ground truth maturity
levels of Apps in our three datasets.

the binary label. In particular, if Ỹik ≤ t, then Ỹik is 0,
otherwise Ỹik is 1. In the training phase, we obtain W via
solving Eq.(6) with Xtrain and Ỹtrain. In the testing phase,

we first get Ỹtest with W and Xtest, and then we use t to
map Ỹtest to Y. In our experiments, we use the widely used
package LibSVM [6] to implement adapted multi-label SVM
classification with label correlations.

4. EXPERIMENTS
Recall that our automatic App maturity rating system not

only predicts the maturity level for a given App but also
provides the reasons why the App has the specific maturity
level. Therefore, we evaluate both the maturity level pre-
diction performance and the reason prediction performance.
In the following, we introduce the datasets that we collected
from both App Store and Google Play, evaluation metrics
we adopt, training and testing, and compared approaches.

4.1 Experimental Setup

4.1.1 Data Collection

Crawling App Store and Google Play: We wrote
crawlers in python to collect 105,108 free iOS Apps and
105,287 paid iOS Apps from App Store, and 261, 947 An-
droid Apps from Google Play. Our crawls include the de-
scription and maturity level of each App. App Store also
labels the mature contents that makes an App be rated as a
specific maturity level. So we also crawl the mature contents
for App Store Apps. We crawled our datasets between July
2014 and September 2014.

Obtaining groundtruth: Apple Inc. hires trained em-
ployees to manually perform maturity analysis for each sub-
mitted App. Therefore, for Apps from App Store, we take
the maturity levels and the associated mature contents crawled
from App Store as their groundtruth. Google Play Apps are
rated by App developers, so their labels are not accurate.
Chen et al. [5] characterized the conditions when the App
Store’s maturity rating policy and the Google Play’s pol-
icy are equivalent, and we leverage their results to locate
Apps whose Android version and iOS version have the same
maturity levels and mature contents. Then, we take the ma-
turity levels and mature contents of the iOS version as the
groundtruth of the corresponding Android Apps. In sum-
mary, we have the following three datasets with groundtruth
maturity information:
• Dataset 1 consists of 105,108 free Apps in App Store.

Figure 6: Top-10 categories of Google Play Apps
in the Dataset 3 that have the most incorrect
developer-provided maturity levels.

• Dataset 2 consists of 105,287 paid Apps in App Store.

• Dataset 3 consists of 14,000 Apps in Google Play.
We distinguish between free Apps and paid Apps for App

Store because we find that predicting their maturity lev-
els achieves substantially different performances. However,
most of Google Play Apps that have groundtruth maturity
information are free, and thus we do not further classify
them into free Apps and paid Apps.

Figure 5 shows the distribution of groudtruth maturity
levels of Apps in our three datasets. We observe imbalanced
distributions. For instance, 73% of Apps in the Dataset 1
have a maturity level of 4+, but only 5% of Apps in the
Dataset 1 have a maturity level of 17+.

Unreliable Google Play ratings: A Google Play App is
said to have an inaccurate maturity level if the maturity level
provided by the developer does not match the groundtruth.
Overall, we find that 45% of Apps in the Dataset 3 have inac-
curate maturity levels. Figure 6 shows the fraction of Google
Play Apps in the Dataset 3 that have inaccurate developer-
provided maturity levels for top-10 App categories. We ob-
serve that Apps in the social networking category are most
likely to be incorrectly rated by developers.

4.1.2 Evaluation Metrics
Since we classify both the maturity levels and the associ-

ated reasons, we evaluate various approaches in two aspects:
1) mature content classification, which is a multi-label task,
and 2) maturity level classification, which is a multi-class
task. Due to the extremely imbalanced label distributions
as we show in Figure 5, we do not compare the algorithms in
terms of accuracy. For instance, a classifier that always pre-
dicts 4+ as the maturity level can already achieve accuracies
of more than 0.70.

Mature content classification: The mature content pre-
diction is a multi-label classification problem. Thus, we
adopt the metrics Precision, Recall, and F1-value [37], which
are widely used to evaluate multi-label classification sys-
tems. Specifically, we denote by C the labels (possible ma-
ture contents). For each label ` ∈ C, we denote by TP`, FP`,
TN`, FN` the number of true positives, false positives, true
negatives, and false negatives, respectively. Then, for each
label ` ∈ C, we have its precision, recall, and F1-value as
P` = TP`

TP`+FP`
, R` = TP`

TP`+FN`
, and F` = 2P`R`

P`+R`
, respec-

tively. Then we compute the overall Precision, Recall, and
F1-value by averaging the precisions, recalls, and F1-values
over all labels, respectively.

Maturity level prediction: For maturity level prediction,
we also use Precision, Recall, and F1-value as our evalua-
tion metrics. More formally, let TPk, FPk, TNk, andFNk be
true positives, false positives, true negatives, and false nega-
tives for Apps with maturity level k, respectively. Then for
each level k, we have precision as Pk = TPk

TPk+FPk
, recall as

Rk = TPk
TPk+FNk

, and F1-value as F1k = 2PkRk
Pk+Rk

. The overall

Precision, Recall, and F1-value are computed by averaging
over all the maturity levels.

4.1.3 Training and Testing
For each of the three datasets, we sample 50% of it uni-

formly at random and treat them as the training data, and
the rest of it is treated as the testing data. We repeat the
experiments for 10 trials and average all metrics over them.1

4.1.4 Compared Approaches
We describe compared approaches for mature content pre-

diction and maturity level prediction separately.

Mature content prediction: Recall that we extract fea-
tures from sensitive words, augmented sensitive words, and
bag-of-words model. Moreover, we consider label correla-
tions. We aim to study the impact of each part. To this end,
we add each part to our framework incrementally. Specifi-
cally, we compare the following methods:

• AAMR-I: Our framework AAMR with only features
from bag-of-words. Label correlations are not consid-
ered.

• AAMR-II: Our framework AAMR with features from
bag-of-words and sensitive words. Label correlations are
not considered.

• AAMR-III: Our framework AAMR with features from
sensitive words, augmented sensitive words, and bag-of-
words model. Label correlations are not considered.

• AAMR-IV: Our framework AAMR with features from
sensitive words, augmented sensitive words, and bag-of-
words model. Label correlations are considered.

Maturity level prediction: We compare the following
approaches to perform maturity level predictions:
• Human Labeling (HL): We asked 3 users (they are our

colleagues) to manually label an App. Given a maturity
rating policy, the users rated an App based on their expe-
riences and their understanding of the App description.
The ratings of the 3 users are aggregated in a majority
voting way to get the final maturity level of the App. If
majority voting does not agree upon a maturity level, we
don’t consider the App any more.

• Developer Report (DR): Google Play requires devel-
opers to report the maturity levels of their developed
apps. For Apps in the Dataset 3, we compute the evalu-
ation metrics for the ratings reported by App developers.

• ALM [5]: To the best of our knowledge, only Chen
et al. [5] studied automatic App maturity level predic-
tion. So we will adopt their method ALM as one baseline
for comparisons. Note that the ALM method does not
predict maturity contents, and thus we do not compare
ALM with mature content prediction approaches.

• Multi-Class Classification (MCC): The multi-class
classification method learns a multi-class classifier which

1We find that the standard deviations of our metrics over the 10
trials are very small, and thus we do not show them for simplicity.

Table 5: Comparisons against human-based maturity
rating approaches.

dataset HL DR AAMR
Precision 0.43 0.68 0.77

Recall 0.34 0.57 0.76
F1 value 0.38 0.62 0.76

directly maps our features extracted from App descrip-
tions to the maturity levels. We use linear multi-class
SVM as the classifier. Note that this method cannot
identify mature contents in an App.

• AAMR: Our two-stage approach first predicts the ma-
ture contents in an App using adapted multi-label SVM
with label correlations, and then labels the maturity level
according to the rating policy.

4.2 Results

4.2.1 Mature Content Prediction
Figure 7 shows the Precision, Recall, and F-value of the

four methods AAMR-I, AAMR-I, AAMR-III, and AAMR-
IV on the three datasets. We observe that feature augmenta-
tion, bag-of-words feature, and label correlation all improve
mature content prediction.

4.2.2 Maturity Level Prediction
We report results for automatic maturity level prediction

approaches and human labelling approaches separately.

Comparing automatic prediction approaches: Figure
8 shows the maturity level prediction performances among
the three automatic approaches, i.e., ALM, MCC, and AAMR.
We observe that both MCC and AAMR achieve much better
performances than ALM. Specifically, MCC achieves around
0.44 larger F-value than ALM on average, and AAMR achieves
0.39 larger F-value than ALM on average. These observa-
tions indicate that our features are much better than sensi-
tive words which are used by ALM. MCC achieves slightly
better performances than our two-stage AAMR method.
This is because our AAMR makes some incorrect predic-
tions about mature contents, which are subsequently used to
label maturity levels. The two-stage approach enlarges the
impact of the incorrect mature content predictions. How-
ever, MCC method cannot identify the mature contents in
an App.

Comparing with human-based methods: We com-
pare our method AAMR with two human-based manually
labelling approaches, i.e., HL and DR. Due to the limited
human resources we have, we sample 500 Apps from the
Dataset 3. For each sampled App, we ask three users (our
colleagues) to rate the maturity level via reading the App de-
scription. The final maturity level of an App is determined
by majority voting among the labels of the three users. If
the three human labels do not agree upon a maturity level,
we do not consider the App. After majority voting, we ob-
tained 441 Apps that have agreed human labels. We also
predict the maturity levels for these Apps using our learned
AAMR model.

Table 5 shows the Precision, Recall, and F value of human
labelling (HL), developer report (DR), and our proposed
automatic method AAMR. We observe that our method
AAMR achieves much more accurate results than DR (14%

Dataset 1 Dataset 2 Dataset 3
0.6

0.65

0.7

0.75

0.8

0.85

0.9

P
re

c
is

io
n

AAMR−I

AAMR−II

AAMR−III

AAMR−IV

(a) Precision

Dataset 1 Dataset 2 Dataset 3
0.6

0.65

0.7

0.75

0.8

0.85

0.9

R
e

c
a

ll

AAMR−I

AAMR−II

AAMR−III

AAMR−IV

(b) Recall

Dataset 1 Dataset 2 Dataset 3
0.6

0.65

0.7

0.75

0.8

0.85

0.9

F
_

v
a

lu
e

AAMR−I

AAMR−II

AAMR−III

AAMR−IV

(c) F1 value

Figure 7: Impact of feature augmentation, bag-of-words feature, and label correlation. We find that these parts are
complementary, i.e., adding each part incrementally improves the performance of our framework.

Dataset 1 Dataset 2 Dataset 3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

ALM

MCC

AAMR

(a) Precision

Dataset 1 Dataset 2 Dataset 3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

c
a

ll

ALM

MCC

AAMR

(b) Recall

Dataset 1 Dataset 2 Dataset 3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
_

v
a

lu
e

ALM

MCC

AAMR

(c) F1 value

Figure 8: Results for the three compared automatic maturity level prediction approaches. We observe that MCC and
AAMR substantially outperform ALM, which indicates the effectiveness of our novel features.

improvement in terms of F value) and HL (38% improve-
ment in terms of F value). Human users can hardly achieve
satisfactory accuracy in rating maturity levels. In our exper-
iments, human users only achieve 38% F values. We specu-
late the reason is that developers mainly describe function-
ality in App descriptions, and humans might not be able to
correlate non-sensitive words to maturity levels. Moreover,
DR achieves better performances than HL. We speculate
the reason is that App developers have better understand-
ing about their Apps and thus could provide more accurate
maturity levels.

We further study how users and Android developers la-
bel maturity levels incorrectly. An App is underrated if the
provided maturity level is lower than its groundtruth, other-
wise an App is overrated. We find that App developers are
more likely to underrate the maturity levels. Specifically,
around 80% of incorrect labels provided by App developers
are underrated while 46% of users-provided incorrect labels
are underrated. We speculate the reason is that App de-
velopers underrated their Apps so that more people could
become their users.

4.2.3 Summary
We demonstrate that feature learning (augmentation), bag-

of-words features, and label correlations are all necessary,
i.e., incorporating them increases the performances of our
framework. Moreover, our approach substantially outper-
forms previous automatic approaches and human-based man-
ual labelling approaches.

5. RELATED WORK
We review related work on mobile App maturity rating,

text analysis, and other App-related studies.

Maturity rating: To the best of our knowledge, little re-
search has been conducted for App maturity rating. Chen
et al. [5] studied the severity of unreliable maturity ratings
for mobile Apps on Google Play. By comparing the matu-
rity ratings of such Apps on Google Play and App Store,
they measured the severity of inaccurate maturity ratings of
Google Play apps. The reason is that Google Play requires
developers themselves to rate their own Apps and develop-
ers tend to underclaim the maturity level in order to attract
a boarder range of users.

Text analysis: The bag-of-words model was first docu-
mented by Harris [14] and has been widely used for docu-
mentation classification [17]. Google developed the word to
vector technique [23, 24], which learns a vector representa-
tion for each word to capture the syntactic and semantic
word relationships. The algorithm takes a text corpus as in-
put and produces the word vectors as output. Fan et al. [11]
demonstrated that linear SVM [7] outperforms other classi-
fiers for short text classification. Kong et al. [20] predicted
the permission required by mobile apps from app descrip-
tions using structure feature learning technique.

Other App-related studies: Many recent app-related
work focus on security and privacy issues. Specifically, they
either reveal the potential security risks in the Android plat-
form [12, 3, 18] or enhance the overall Android security via

retrofitting the android platform or adding more features
into it [26, 10, 31]. In addition, users privacy preference
can also be utilized in personalized mobile app recommen-
dation [21]. These work are orthogonal to ours.

6. CONCLUSION AND FUTURE WORK
The scope of this work is to propose a framework that

automatically predicts mature contents and maturity levels
for mobile Apps from app descriptions. We map the ma-
ture content prediction to a multi-label classification prob-
lem and then use the predicted mature contents to label the
maturity levels. First, we extract novel features from App
descriptions using deep learning techniques by considering
the semantics of words. Second, we adapt SVM to cap-
ture label correlations in a multi-label setting. The exper-
iment results on real-world datasets demonstrate that our
approach can achieve relatively high accuracies with only
App descriptions, and that our approach substantially out-
performs baseline methods,.

A few interesting directions include incorporating more
features from information sources such as user comments,
UI screenshots, and dynamic running behaviors of Apps into
our framework, which makes our system more robust to at-
tacks such as app description obfuscations, as well as rating
maturity levels of dynamic contents such as advertisements
in Apps.

Acknowledgment: We thank reviewers for their valuable
comments.

7. REFERENCES
[1] Andriod App Ratings 2014. https://support.google.com/

googleplay/android-developer/answer/188189, 2014.

[2] Apple Store new Apps. http://goo.gl/ojrhp2.
[3] L. Cen, D. Kong, H. Jin, and L. Si. Mobile app security

risk assessment: A crowdsourcing ranking approach from
user comments. In SDM, pages 658–666, 2015.

[4] H. Chang, Y. Zhou, P. Spellman, and B. Parvin. Stacked
predictive sparse coding for classification of distinct regions
in tumor histopathology. In ICCV, December 2013.

[5] Y. Chen, H. Xu, Y. Zhou, and S. Zhu. Is this app safe for
children?: A comparison study of maturity ratings on
android and ios applications. WWW ’13, pages 201–212,
2013.

[6] C.-J. L. Chih-Chung Chang. Libsvm: A library for support
vector machines. In ACM Transactions on Intelligent
Systems and Technology, 2011.

[7] C. Cortes and V. Vapnik. Support-vector networks.
Machine Learning, 1995.

[8] K. Crammer and Y. Singer. On the algorithmic
implementation of multiclass kernel-based vector machines.
J. Mach. Learn. Res., 2, Mar. 2002.

[9] A. C. P. L. F. de Carvalho and A. A. Freitas. A tutorial on
multi-label classification techniques. In Foundations of
Computational Intelligence (5), volume 205. 2009.

[10] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S.
Wallach. Quire: Lightweight provenance for smart phone
operating systems. In Usenix Security, 2011.

[11] R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin.
Liblinear: A library for large linear classification. Journal
of Machine Learning Research, 9, 2008.

[12] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and
E. Chin. Permission re-delegation: Attacks and defenses. In
Usenix Security, 2011.

[13] D. M. Fergusson, J. M. Boden, and L. J. Horwood.
Exposure to childhood sexual and physical abuse and
adjustment in early adulthood. Child abuse & neglect,
32(6), 2008.

[14] Z. S. Harris. Distributional structure. Word, 1954.

[15] Inappropriate content making its way to mobile apps.
http://goo.gl/dqi1cg.

[16] iOS App Ratings 2014.
https://developer.apple.com/library/ios/
documentation/LanguagesUtilities/Conceptual/
iTunesConnect_Guide/iTunesConnect_Guide.pdf, 2014.

[17] T. Joachims. Learning to classify text using support vector
machines: Methods, theory and algorithms. Kluwer
Academic Publishers, 2002.

[18] D. Kong, L. Cen, and H. Jin. AUTOREB: Automatically
understanding the review-to-behavior fidelity in android
applications. In CCS, 2015.

[19] D. Kong, C. H. Q. Ding, H. Huang, and H. Zhao.
Multi-label relieff and f-statistic feature selections for image
annotation. In CVPR, pages 2352–2359, 2012.

[20] D. Kong and H. Jin. Towards permission prediction on
mobile apps via structure feature learning. In SDM, pages
604–612, 2015.

[21] B. Liu, D. Kong, L. Cen, N. Z. Gong, H. Jin, and H. Xiong.
Personalized mobile app recommendation: Reconciling app
functionality and user privacy preference. In WSDM, pages
315–324, 2015.

[22] C. Manning and H. Schutze. Foundation of statistical
natural language processing. 1999.

[23] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient
estimation of word representations in vector space. CoRR,
abs/1301.3781, 2013.

[24] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and phrases
and their compositionality. In NIPS, 2013.

[25] Mobile Apps for Kids: Current Privacy Disclosures are
Disappointing. http://goo.gl/xr1udt.

[26] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden,
J. Klein, and Y. L. Traon. Effective inter-component
communication mapping in android withepicc: An essential
step towards holistic security analysis. In Usenix Security,
2013.

[27] R. E. O’Hara, F. X. Gibbons, M. Gerrard, Z. Li, and J. D.
Sargent. Greater exposure to sexual content in popular
movies predicts earlier sexual debut and increased sexual
risk taking. Psychological science, 23(9), 2012.

[28] Overexposed and Under-Prepared: The Effects of Early
Exposure to Sexual Content. http://goo.gl/x2whgr.

[29] A. Sadilek, S. P. Brennan, H. A. Kautz, and V. Silenzio.
nemesis: Which restaurants should you avoid today? In
HCOMP 2013, 2013.

[30] K. Spärck-Jones. A statistical interpretation of term
specificity and its application in retrieval. pages 11–21,
1972.

[31] N. Wang, B. Zhang, B. Liu, and H. Jin. Investigating effects
of control and ads awareness on android users’ privacy
behaviors and perceptions. In MobileHCI 2015. ACM, 2015.

[32] Word2Vec Tool for Computing Continuous Distributed
Representations of Words.
https://code.google.com/p/word2vec/.

[33] Y. Yang and J. O. Pedersen. A comparative study on
feature selection in text categorization. In ICML 1997,
1997.

[34] H.-F. Yu, C.-H. Ho, P. Arunachalam, M. Somaiya, and
C.-J. Lin. Product title classification versus text
classification. 2012.

[35] G. Yuan, C. Ho, and C. Lin. Recent advances of large-scale
linear classification. Proceedings of the IEEE,
100(9):2584–2603, 2012.

[36] M. Zhang and Z. Zhou. A review on multi-label learning
algorithms. IEEE TKDE, 26(8), 2014.

[37] M.-L. Zhang and Z.-H. Zhou. A review on multi-label
learning algorithms. Knowledge and Data Engineering,
IEEE Transactions on, 26(8):1819–1837, Aug 2014.

