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ABSTRACT
Understanding social network structure and evolution has impor-
tant implications for many aspects of network and system design
including provisioning, bootstrapping trust and reputation systems
via social networks, and defenses against Sybil attacks. Several re-
cent results suggest that augmenting the social network structure
with user attributes (e.g., location, employer, communities of inter-
est) can provide a more fine-grained understanding of social net-
works. However, there have been few studies to provide a system-
atic understanding of these effects at scale.

We bridge this gap using a unique dataset collected as the Google+
social network grew over time since its release in late June 2011.
We observe novel phenomena with respect to both standard social
network metrics and new attribute-related metrics (that we define).
We also observe interesting evolutionary patterns as Google+ went
from a bootstrap phase to a steady invitation-only stage before a
public release.

Based on our empirical observations, we develop a new gener-
ative model to jointly reproduce the social structure and the node
attributes. Using theoretical analysis and empirical evaluations, we
show that our model can accurately reproduce the social and at-
tribute structure of real social networks. We also demonstrate that
our model provides more accurate predictions for practical appli-
cation contexts.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and behavioral sciences

Keywords
Social network measurement, Node attributes, Social network evo-
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1. INTRODUCTION
Online social networks (e.g., Facebook, Google+, Twitter) have

become increasingly important platforms for interacting with peo-
ple, processing information and diffusing social influence. Thus
understanding social-network structure and evolution has impor-
tant implications for many aspects of network and system design
including bootstrapping reputation via social networks (e.g., [39]),
defenses against Sybil attacks (e.g., [14]), leveraging social net-
works for search [1], and recommender systems with social regu-
larization [35].

Traditional social network studies have largely focused on un-
derstanding the topological structure of the social network, where
each user can be viewed as a node and a specific relationship (e.g.,
friendship, co-authorship) is represented by a link between two
nodes. More recently, there has been growing interest in augment-
ing this social network with user attributes, which we call as Social-
Attribute Network (SAN). User attributes could be static (e.g., school,
major, employer and city derived from user profiles), or dynamic
(e.g., online interest and community groups). Recent studies have
demonstrated the promise of social-attribute networks in applica-
tions such as link prediction [58, 17], attribute inference [17, 58],
and community detection [62].

Despite the growing importance of such social-attribute networks
in social network analysis applications, there have been few efforts
at systematically measuring and modeling the evolution of social-
attribute networks. Most prior work in the measurement and mod-
eling space focuses primarily on the social structure [3, 4, 13, 26,
28, 33, 38]. Measuring social-attribute networks can simultane-
ously inform us the properties of social network structure, attribute
structure, and how such attributes impact social network structure.

In this paper, we present a detailed study of the evolution of
social-attribute networks using a unique large-scale dataset col-
lected by crawling the Google+ social network struture and its user
profiles. This dataset offers a unique opportunity for us as we were
fortunate to observe the complete evolution of the social network
and its growth to around 30 million users within a span of three
months.

We observe novel patterns in the growth of the Google+ social-
attribute network. First, we observe that the social reciprocity of
Google+ is lower than many traditional social networks and is closer
to that of Twitter. Second, in contrast to many prior networks,
the social degree distributions in Google+ are best modeled by
a lognormal distribution. Third, we observe that assortativity of



Google+ social network is neutral while many other social net-
works own positive assortativities. Fourth, we also see that the
distinct phases (initial launch, invite only, public release) in the
timeline of Google+ naturally manifest themselves in the social and
attribute structures. Fifth, for the generalized attribute metrics (that
we define), while some attribute metrics mirror their social counter-
parts (e.g., diameter), several show distributions and trends that are
significantly different (e.g., clustering coefficient, attribute degree).
Finally, via the social-attribute network framework, we study the
impact of user attributes on the social structure and observe that
nodes sharing common attributes are likely to have higher social
reciprocity and that some attributes have much stronger influence
than others (e.g., Employer vs. City).

Based on our observations, we develop a new generative model
for SANs. Our model includes two new components, i.e., attribute-
augmented preferential attachment and attribute-augmented triangle-
closing, which extend the classical preferential attachment [5, 27]
and triangle-closing [29, 43, 53, 2], respectively. Using both theo-
retical analysis and empirical evaluation, we show that our model
can reproduce SANs that accurately reflect the true ones with re-
spect to various network metrics and real-world applications. Such
a generative model has a lot of applications [30] such as network
extrapolation and sampling, network visualization and compres-
sion, and network anonymization [44].

To summarize, the key contributions of this work are:

• We perform the first study of the evolution of social-attribute
networks using Google+. We observe novel phenomena in stan-
dard social structure metrics and new attribute-related metrics
(that we define) and how attributes impact the social structure.
• We develop a measurement-driven generative model for the

social-attribute network that models the impact of user attributes
into the network evolution.
• Using both theoretical analysis and empirical evaluation, we

validate that our model can accurately reproduce real social-
attribute networks.

2. PRELIMINARIES AND DATASET
In this section, we begin with some background on augmenting

social network structure with attributes. Then, we describe how
we collected the Google+ data and how we augment the Google+
social network with user attribute information. We also present
some basic measurements describing the evolution of the Google+.

2.1 Social-Attribute Network (SAN)
In this section, we review the definition of Social-Attribute Net-

work (SAN) [17] and introduce the basic notations used in the rest
of this paper.

Given a directed social network G, in which nodes are users and
edges represent friend relationships between users, and M distinct
binary attributes, which could be static (e.g., name of employer,
name of school, major, etc.) or dynamic (e.g., interest groups),
a SAN is an augmented network with M additional nodes where
each such node corresponds to a specific binary attribute. For each
node u in G with attribute a, we create an undirected link between
u and a in the SAN.

Nodes in a SAN corresponding to nodes in G are called social
nodes and denoted as the set Vs, while nodes representing attributes
are called attribute nodes and denoted as the set Va. Figure 1
shows an example SAN. Links between social nodes are called
social links and denoted as the set Es, while links between so-
cial nodes and attribute nodes are called attribute links and de-

social node attribute node
social link attribute link

San Francisco
UC Berkeley

Computer Science

Google Inc.

u1 u2 u6u5u4u3

Figure 1: Illustration of a SAN with six social nodes and four at-
tribute nodes. Note that the social links between users are directed
whereas the attribute-user links are undirected.

noted as the set Ea. Thus a Social-Attribute Network is denoted
as SAN = (Vs, Va, Es, Ea).

For a given social or attribute node u in a SAN, we denote its
attribute neighbors as Γa(u) = {v|v ∈ Va, (u, v) ∈ Ea}, social
neighbors as Γs(u) = {v|v ∈ Vs, (v, u) ∈ Es ∪ Ea or (u, v) ∈
Es ∪Ea}, social in neighbors as Γs,in(u) = {v|(v, u) ∈ Es} and
social out neighbors as Γs,out(u) = {v|(u, v) ∈ Es}. Note that
an attribute node can only have social neighbors.

2.2 Google+ Data
Google+ was launched with an invitation-only test phase on June

28, 2011, and opened to everyone 18 years of age or older on
September 20, 2011. We believed this was a tremendous oppor-
tunity to observe the real-world evolution of a large-scale social-
attribute network. Thus, we began to crawl daily snapshots of pub-
lic Google+ social network structure and user profiles; our crawls
lasted from July 6 to October 11, 2011. The first snapshot was
crawled by breadth-first search (without early stopping). On sub-
sequent days, we expanded the social structure from the previous
snapshot. For most snapshots, our crawl finished within one day as
Google did not limit the crawl rate during that time.

We believe our crawl collected a large Weakly Connected Com-
ponent (WCC) of Google+. This may be surprising as many past
attempts on Flickr, Facebook, YouTube etc., were unable to do
so [38]. The key difference is that these were only able to access
outgoing links. In contrast, each user in Google+ has both an out-
going list (i.e., “in your circles”) and an incoming list (i.e., “have
you in circles”). This allows us to access both outgoing and incom-
ing links making it feasible to crawl the entire WCC.

We have two points of reference that suggest our coverage is high
(≥ 70%): 1) TechCrunch estimated the number of Google+ users
on July 12, 2011 is around 10 million [52]; our crawled snapshot
on the same day has 7 million users. (2) Google announced 40 mil-
lion users had joined Google+ in middle October [19]; our crawled
snapshot on October 11 has around 30 million users.

We take each user u in Google+ as a social node in SAN, and
connect it to her outgoing friends via outgoing links and incom-
ing friends via incoming links. We use four attribute types School,
Major, Employer and City that were available and easy to extract.
Specifically, we find all distinct schools, majors, employers and
cities that appear in at least one user profile and use them as at-
tribute nodes. Recall that a social node u is connected to attribute
node a via an undirected link if u has attribute a. In this way, we
construct a SAN from each crawled snapshot, resulting in 79 SANs
during the period from July 6 to October 11, 2011.

Figures 2 and 3 show the temporal evolution of the number of
nodes and links in the Google+ SAN. From the results we clearly
see three distinct phases in the evolution of Google+: Phase I from
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(a) Social nodes
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(b) Attribute nodes

Figure 2: Growth in the number of social and attribute nodes in the
Google+ dataset.
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(a) Social links
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(b) Attribute links

Figure 3: Growth in the number of social and attribute links in the
Google+ dataset

day one to day 20, which corresponds to the early days of Google+
whose size increased dramatically; Phase II from day 21 to day 75,
during which Google+ went into a stabilized increase phase; and
Phase III from day 76 to day 98, when Google+ opened to public
(i.e., without requiring an invitation), resulting in a dramatic growth
again. We point this out because we observe a similar three-phase
evolution pattern for almost all network metrics that we analyze in
the subsequent sections.

In the following sections, we use the last or largest snapshot,
unless we are interested in the time-varying behavior.
Potential biases: We would like to acknowledge two possible bi-
ases. First, users may keep some of their friends or circles private.
In this case, we can only see the publicly visible list. Thus we
may not crawl the entire WCC and underestimate the node degrees.
However, as discussed earlier, we obtain a very large connected
component that covers more than 70% of known users which is
sufficiently representative. Second, users may choose not to de-
clare their attributes, in which case we may underestimate the im-
pact of attributes on the social structure. However, we find that
roughly 22% of users declare at least one attribute which repre-
sents a statistically large sample from which to draw conclusions.
Furthermore, by validating the attribute-related results via further
subsampling the attributes we have, we show that our attributes are
representative of the entire attributes.

3. SOCIAL STRUCTURE OF THE
GOOGLE+ SAN

In this section, we begin by presenting several canonical network
metrics commonly used for characterizing social networks such as
the reciprocity, density, clustering coefficient, and degree distribu-
tion [38, 25, 28, 41]. These metrics are useful to expose the inher-
ent structure of a social network in terms of the friend relationships
and whether there are “community” structures beyond a one-hop

friend relationship. It is particularly useful to revisit these metrics
in the context of Google+ both because of its scale and because it
enables a somewhat hybrid relationship model compared to other
networks such as Facebook, Twitter, Flickr, and email networks.
Furthermore, since we have a unique opportunity to observe the
network as it grew, we also analyze how these properties changed
as the Google+ SAN evolved.

3.1 Reciprocity
The reciprocity metric for directed social networks represents the

fraction of social links that are mutual; i.e., if there is a A → B
edge what is the likelihood of the reverse B → A edge. Pre-
vious work studied the global reciprocities for specific snapshots
of social networks and measured it to be 0.62 on Flickr, 0.79 on
YouTube [38], and 0.22 on Twitter [28]. We focus on the evo-
lution of global reciprocity for Google+ in Figure 4a. The result
shows an interesting behavior where the reciprocity fluctuates in
Phase I, decreases in Phase II and decreases even faster in Phase
III. We speculate that this arises because of the hybrid nature of
Google+. Initially many people treat the network like a traditional
social network (e.g., Facebook) where the relationships are mutual.
However, as time progresses and people appear to become famil-
iar with the Twitter-like publisher-subscriber model also offered by
Google+, the reciprocity decreases.

3.2 Density
The ratio of links-to-nodes, |Es|

|Vs| , captures the density 1 of a so-
cial network. To put this in context, previous studies show that the
social density increases over time on citation and affiliation net-
works [33], on Facebook [4], and fluctuates in an increase-decrease-
increase fashion on Flickr [26], and is relatively constant on email
communication networks [25].

Figure 4b shows the evolution of this social density metric in
Google+. We observe that social density in Google+ network has
a sharp decrease followed by an increase in Phase I, a continued
increase in Phase II, and a sudden drop in Phase III (when Google+
opened to the public) followed by a steady increase again. This
three-phase pattern can be explained in conjunction with the trends
in Figures 2a and 3a. In the early part of Phase I, even though the
rate of users joining Google+ is high, the rate of adding links is
low, possibly because many of a user’s existing friends have not
yet joined. This causes social density to decrease. As users acquire
friends with a rate higher than the rate of new users in later part of
Phase I and the same trend continuing in Phase II, the social den-
sity increases. In Phase III, the number of users in Google+ had
a sudden jump due to the public release but the number friendship
links increases less dramatically, which once again causes the so-
cial density to drop significantly around t=70, but then starts slowly
increasing again. Our findings have implications for network mod-
eling. Specifically, many network models either assume constant
density [5, 24] or power-law densification [33], which is not con-
sistent with Google+.

3.3 Diameter
In directed social networks, the distance between two user nodes

u and v, dist(u, v) is defined as the length of the shortest directed
path whose head is v and tail is u. Note that only social linksEs are
used in this definition. We find that the distribution of the distance
between nodes has a dominant mode at a distance of six, with most
nodes (90%) having a distance of 5, 6, or 7 (not shown).
1In graph theory, density is defined as the fraction of existing links
with respect to all possible links. We follow the terminology in [26]
in order to compare with previous results.
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(d) Social clustering coefficient

Figure 4: Evolution of four key metrics: reciprocity, density, diameter and clustering coefficient on the Google+ SAN. In each case, we
observe distinct behaviors in the three phases corresponding to early initialization, time to public release, and time after public release.

Based on the distance distribution, we can also define the effec-
tive diameter as the 90-th percentile distance (possibly with some
interpolation) between every pair of connected nodes [33]. Unfor-
tunately, computing the effective diameter is infeasible for large
networks, so we use the HyperANF approximation algorithm [8],
which has been shown to be able to approximate diameter with high
accuracy.

Previous work observed effective diameter shrinks in citation
networks, autonomous networks and affiliation network [33], in
Flickr and Yahoo! 360 [26], and in Cyworld [3]. However, we ob-
serve that the effective diameter follows a three-phase evolution as
seen in Figure 4c, which again can be explained in conjunction with
the trends in Figures 2a and 3a. In Phase I, user joining rate out-
paces link creation rate, causing the diameter to increase; in Phase
II, user joining rate is lower than link acquisition rate, resulting
in decreasing diameter; and in Phase III user joining rate is much
higher, resulting in a diameter increasing phase again. Again, our
observations have implications for network modeling. Existing net-
work models either assume logarithmically growing diameter [55,
5] or shrinking diameter [30, 33].

3.4 Clustering Coefficient
Given a network G and node u, u’s clustering coefficient is de-

fined as

c(u) =
L(u)

|Γs(u)|(|Γs(u)| − 1)
,

where L(u) is the number of links among u’s social neighbors
Γs(u) and the average social clustering coefficient is defined as
Cs = 1

|Vs|
∑
u∈Vs

c(u) [55]. Intuitively, this captures the commu-
nity structure among a user’s friends.

Again, computing the average clustering coefficient is expensive.
Thus, we extend the constant-time approximate algorithm proposed
by Schank et al. for undirected networks [45], and develop an al-
gorithm to approximate the clustering coefficients for a directed
network. With d ln2ν

2ε2
e random samples, our constant time algo-

rithms can bound the error of average clustering coefficient within
ε with probability at least 1− 1

ν
. In practice, we set the error to be

ε = 0.002 and ν = 100. Algorithm details and theoretical analysis
can be found in Appendix A.

Kossinets et al. [25] observed constant average social clustering
coefficient over time in an email communication network. How-
ever, we find that the evolution of average social clustering coef-
ficient of Google+, which is shown in Figure 4d, again follows a
three-phase evolution pattern where the clustering coefficient dra-
matically decreases in Phase I, increases slowly in Phase II and de-
creases again in Phase III. Our findings indicate that the community
structure among users’ friends is highly dynamic, which inspires us
to do dynamic community detection.
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Figure 5: Indegree and outdegree distributions for the social nodes
in the Google+ SAN along with their best-fit curves. We observe
that both are best modeled by a discrete lognormal distribution un-
like many networks that suggest power-law distributions.
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Figure 6: Evolution of the lognormal parameters for the indegree
and outdegree distributions.

3.5 Degree Distributions
Next, we focus on the social indegree and outdegree of users in

Google+. In each case, we are also interested in identifying an em-
pirical best-fit distribution using the tool [54, 10], which compares
fits of several widely used distributions (e.g., power-law, lognor-
mal, power-law with cutoff using) with respect to goodness-of-fit.
We find that unlike many studies on social networks, in which so-
cial degrees usually follow a power-law distribution [13, 38], so-
cial degrees are best captured by a discrete lognormal distribution
in Google+. Recall that a random variable x ∈ Z+ follows a
power-law distribution if p(x = k) ∝ k−α, where α is the ex-
ponent of the power-law distribution. On the other hand, a ran-
dom variable x ∈ Z+ follows a discrete lognormal distribution if
p(x = k) ∝ 1

k
exp(− (lnk−µ)2

2σ2 ) [7], where µ and σ are the mean
and standard deviation respectively of the lognormal distribution.

Figure 5 shows these degree distributions and their discrete log-
normal fits, and Figure 6 shows the evolutions of the parameters for
the fitted discrete lognormal distributions. We see the evolution of



the outdegree and indegree distributions follows a similar trend but
with the fluctuation differing in magnitude (Figures 6a, 6b).

Lognormally distributed degree distributions imply that there are
probabilistically more low degree social nodes in Google+ than
those in power-law distributed networks.
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Figure 7: Two metrics for capturing the joint-degree distribution:
(a) knn shows a log-log plot of the outdegree versus the average
indegree of friends and (b) shows the evolution of the assortativity
coefficient.

3.6 Joint Degree Distribution
Last, we examine the joint degree distribution (JDD) of the Google+

social structure. JDD is useful for understanding the preference of
a node to attach itself to nodes that are similar to itself. One way to
approximate the JDD is using the degree correlation function knn,
which maps outdegree to the average indegree of all nodes con-
nected to nodes of that outdegree [42, 38]. An increasing knn trend
indicates high-degree nodes tend to connect to other high-degree
nodes; a decreasing knn represents the opposite trend. Figure 7a
shows the knn function for Google+ social structure.

The JDD can further be quantified using the assortativity coef-
ficient r that can range from -1 to 1 [41]. r is positive if knn is
positively correlated to node degree k. Figure 7b illustrates the evo-
lution of the assortativity coefficient. We observe that r keeps de-
creasing in all three phases but at different rates. Furthermore, un-
like many traditional social networks where the assortativity coeffi-
cient is typically positive—0.202 for Flickr, 0.179 for LiveJournal
and 0.072 for Orkut [38, 41]—Google+ has almost neutral assorta-
tivity close to 0. The neutral assortativity can possibly be explained
by the hypothesis that Google+ is a hybrid of two ingredients, i.e., a
traditional social network and a publisher-subscriber network (e.g.,
Twitter). Traditional social networks usually have positive assor-
tativity; publisher-subscriber networks often have negative assorta-
tivity because high-degree publisher nodes tend to be connected to
low-degree subscriber nodes. Thus a hybrid of them results in a net-
work with neutral assortativity. The evolution pattern of Google+’
assortativity coefficient (i.e., positive in Phase I, around 0 in Phase
II, and negative in Phase III) manifests the competing process of
the two ingredients of Google+. More specifically, the traditional
network ingredient slightly wins in Phase I, resulting in a slightly
positive assortativity coefficient. A draw between them in Phase
II results in the neutral assortativity. In Phase III, the publisher-
subscriber ingredient wins, resulting in a slightly negative assorta-
tivity coefficient. This implies that Google+ is more and more like
a publisher-subscriber network.

3.7 Summary of Key Observations and Impli-
cations

Analyzing the social structure of Google+ and its evolution over
time, we find that:

• In contrast to many traditional networks, we find that Google+
has low reciprocity, the social degree distribution is best mod-
eled by a lognormal distribution rather than a power-law distri-
bution, and the assortativity is neutral rather than positive.
• Google+ is somewhere between a traditional social network

(e.g., Flickr) and a publisher-subscriber network (e.g., Twitter),
reflecting the hybrid interaction model that it offers. Moreover,
it’s more and more closer to a publisher-subscriber network.
• The evolutionary patterns of various network metrics in Google+

are different from those in many traditional networks or as-
sumptions of various network models. These findings imply
that existing models cannot explain the underlying growing mech-
anism of Google+, and we need to design new models for re-
producing social networks similar to Google+.

4. ATTRIBUTE STRUCTURE OF THE
GOOGLE+ SAN

In the previous section we looked at well-known social network
metrics. In this section, we focus on analyzing the attribute struc-
ture of the Google+ SAN. To this end, we extend the metrics from
the previous section to the attributes as well. Finally, we show the
importance of using attributes in understanding the social struc-
ture by studying their impact on metrics we analyzed earlier (e.g.,
reciprocity, clustering coefficient, and degree distribution). These
attribute-related studies will characterize the attribute structure, give
us insights about the underlying growing mechanism of Google+,
and eventually guide us design a new generative model for Google+
SAN.
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Figure 8: Evolution of the attribute density and average attribute
clustering coefficient in the Google+ SAN.
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(a) Distributions in the original SAN
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Figure 9: Distributions of clustering coefficient with respect to node
degrees. (a) Comparison of social and attribute clustering coeffi-
cient distributions in the original SAN. (b)Comparison of distribu-
tions of attribute clustering coefficients in the original SAN and the
subsampled SAN.



4.1 Attribute Metrics
Density: We consider a natural extension of the social density
metric from §3.2 and define attribute density as |Ea|

|Va| . Different
from our observations with social density in Figure 4b, in Figure 8a,
We observe the attribute density increases rapidly in Phase I, stays
relatively flat in Phase II, and slightly decreases in Phase III. The
reason for the decrease in Phase III is the large volume of new
(i.e., non-invitation) users joining Google+ with many new attribute
nodes whose social degrees are small.

Diameter: We extend the distance metric from §3.3 to define the
attribute distance between two attribute nodes a and b as dist(a, b) =
min{dist(u, v)|u ∈ Γs(a), v ∈ Γs(b)} + 1.2 Intuitively, attribute
distance is the minimum number of social nodes that a attribute
node has to traverse before reaching to the other one; i.e., attribute
distance is the distance between two attribute communities. Sim-
ilarly, we can consider the effective diameter using this attribute
distance. Figure 4c also shows the evolution of the attribute diam-
eter and shows that it very closely mirrors the social diameter.

Clustering coefficient: Similarly, we generalize the social clus-
tering coefficient from §3.4 to define the attribute clustering coeffi-
cient c(u) for the attribute node u, and the average attribute cluster-
ing coefficient as Ca = 1

|Va|
∑
u∈Va

c(u). This attribute cluster-
ing coefficient c(u) characterizes the power of attribute u to form
communities among users who have the attribute u. Compared to
Figure 4d, we find in Figure 8b that the average attribute clustering
coefficient evolves in a different pattern since it’s relatively stable
in Phase II.

We also show the distribution of average social and attribute clus-
tering coefficients as a function of node degree in Figure 9a. We
observe that both social and attribute clustering coefficients follow
a power-law distribution with respect to node degrees, but attribute
clustering coefficient distribution has a larger exponent. Moreover,
we see that in general attribute clustering coefficients are lower be-
cause many shared attributes (e.g., city or major) will not naturally
translate into a social relationship.
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(b) Social degree of attribute nodes

Figure 10: Distributions of attribute-induced degrees in the
Google+ SAN along with their best fits. The attribute degree of
social nodes is best modeled by a lognormal whereas the social de-
gree of attribute nodes is best modeled by a power-law distribution.

Degree distributions: As discussed earlier, SANs introduce edges
between social and attribute nodes. Thus, we consider two new no-
tions of node degrees: (1) social degree of attribute nodes (i.e., the
number of users that have this attribute) and (2) attribute degree
of social nodes (i.e., the number of attributes each user has). We
find that the attribute degree of social nodes is best modeled by a
lognormal distribution whereas the social degree of attribute nodes

2Other definitions are possible, e.g, using average instead of min.
We choose min because of its computational efficiency.
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Figure 11: Evolution in lognormal and power-law parameters for
the attribute and social degree distributions

is best modeled by a power-law distribution. Figure 10 and Fig-
ure 11 show the degree distributions and evolution of their fitted
parameters.

In terms of the evolution, we find the attribute degree evolution
seen in Figure 11 is significantly different from the previous obser-
vation in Figure 6: its mean decreases in Phase I, remains roughly
constant in Phase II, and decreases again in Phase III. However,
its standard deviation increases slightly in all phases. Finally, for
the social degree which follows a power-law distribution, the expo-
nent decreases fast in Phase I, and increases slightly in Phase II and
Phase III.
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Figure 12: (a) Joint degree of attribute nodes: Log-log plot of the
social degree versus the average attribute degree of social neigh-
bors of attribute nodes. (b) The evolution of the attribute assorta-
tivity coefficient.

Joint degree distribution: Next, we extend the joint degree distri-
bution (JDD) analysis to attribute nodes. For each social degree k,
we compute knn as the average attribute degree of social neigh-
bors of attribute nodes that have social degree k. Intuitively, it
captures the tendency of attribute nodes with high social degree
to connect to social nodes with high attribute degree; i.e., if many
nodes share a particular attribute, then are these nodes likely have
many attributes? Figure 12 shows the knn function for attribute
JDD and the evolution of the attribute assortativity. Intuitively,
we expect this relationship to be neutral and the result confirms
this intuition; e.g., there are many Google+ users in New York but
that does not imply the people in New York have many attributes.
One interesting observation is that attribute assortativity coefficient
evolves slightly differently compared to social assortativity coeffi-
cient (Figure 7b); it is stable in Phase III whereas social assortativ-
ity decreases significantly.

4.2 Influence on Social Network Structure
Next, we look at how attributes influence the social structure of

the Google+ SAN w.r.t the metrics discussed in §3.
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Figure 13: Influence of attribute on reciprocity and clustering co-
efficients.

Reciprocity: We study how the number of common attribute neigh-
bors influences reciprocity in conjunction with the number of com-
mon social neighbors. Let a and s denote the number of attribute
and social neighbors of a given node, respectively. For each pair
(s, a), we compute rs,a as the percentage of links that are recip-
rocal among all the links whose endpoints have s social neighbors
and a attribute neighbors.

To compute this, we look at all one directional links at the snap-
shot collected halfway and then compute the number of such links
that become bidirectional at the last snapshot. We split these by the
number of common social and attribute neighbors between these
nodes at the halfway stage and show the rs,a values in Figure 13.
We see that the reciprocity is almost twice as high for nodes that
share common attribute neighbors compared to nodes without com-
mon attributes, regardless of the number of common social neigh-
bors. While sharing common social neighbors improves link reci-
procity, there is a natural diminishing returns property beyond 10
common social neighbors, and even decreasing for much larger
values. We speculate that nodes sharing too many social neigh-
bors are likely users with many “weak” ties. For recent reciprocity
prediction problem [9, 21], our findings imply that any reciprocity
predictor should incorporate node attributes instead of pure social
structure metrics.

Clustering coefficient: Next, we compute the average attribute
clustering coefficient for the 4 attribute types: Employer, School,
Major and City. For example, we compute the attribute clustering
coefficients for all attribute nodes belonging to the attribute type
Employer, and then average them to obtain the average attribute
clustering coefficient for Employer. Figure 13b shows that attribute
types vary in their influence on forming communities and that users
with the same Employer attributes are much more likely to form
communities than users sharing other attribute types. This has in-
teresting implications for link prediction and attribute inference.
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Figure 14: Influence of attribute on social degree

Degree distribution: For brevity, we only focus on the Employer
and Major attributes and show the result for the top attribute values
observed within each category. We plot the median, 25th , and 75th

percentile of the social outdegree of nodes that have these attribute
values in Figure 14. We see that the users with Employer=Google
and Major=Computer Science are likely to have higher degrees.
We also computed the full degree distributions for these attribute
values and saw that they follow different lognormal distributions
(not shown). We speculate this could be a specific artifact of the
Google+ network as many of the early adopters likely consist of
Google employees and users in the IT/CS industry.

4.3 Validation via Subsampling
One natural question is whether the attributes of 22% of users we

collected is a good representative of the entire attributes. To this
end, we use subsampling method to validate our attribute-related
results. We use attribute clustering coefficient distribution with re-
spect to node degrees as an example, and observe similar results
for other metrics. For each user with attributes, we remove her at-
tributes with probability 0.5, from which we obtain a subsampled
SAN. Then we calculate the attribute clustering coefficient distribu-
tions for the original and this subsampled SANs. Figure 9b shows
that the results of the original and subsampled SANs are almost
identical. Given the assumption that whether a user fills in her at-
tributes is a random and independent event, our results demonstrate
that the attributes of 22% of users is a representative sample of the
attributes of all the users.

4.4 Summary of Key Observations and Impli-
cations

In this section, we studied the attribute structure of the Google+
SAN and how such attribute structure impacts the social structure.
Our key observations are:
• While some attribute metrics mirror their social counterparts

(e.g., diameter), several show distributions and trends that are
significantly different (e.g., clustering coefficient, attribute de-
gree). These observations will guide us to design models for
SAN.
• We confirm that attributes have interesting impact on the so-

cial structure. e.g., nodes are likely to have higher reciprocity
if they share common attributes. These findings have various
implications. For instance, reciprocity predictor should incor-
porate node attributes.
• We also observe that some attribute types naturally have stronger

influence than others. For example, users sharing the same em-
ployer have higher probability to be linked compared to users
sharing the same city. Data mining tasks such as link prediction
and attribute inference should potentially benefit from these
findings.

5. A GENERATIVE MODEL FOR SAN
From the previous sections, we have seen novel phenomena in

the social and attribute structure of the Google+ SAN and that the
attribute structure impacts the social structure significantly. A nat-
ural question is whether we can create an accurate generative net-
work model that can reproduce both the social and attribute struc-
tures we observe. Such a generative model can help us understand
the growing mechanism of SAN, and allow other applications such
as network extrapolation and sampling, network visualization and
compression, and network anonymization [30].

Prior work on generative models focus primarily on the social
structure [5, 24, 2, 33, 29]. Consequently, these approaches can-
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Figure 15: Comparison between Power Attribute Preferential At-
tachment (PAPA) and Linear Attribute Preferential Attachment
(LAPA) models. All result numbers are percentage of relative im-
provements over the loglikelihood of the PA model, i.e., with α =1
and β = 0.

not model the attribute structure or their impact on social structure.
To address this gap, we provide a new generative model taking into
account the attribute structure from first principles rather than over-
laying it after-the-fact. To this end, we extend a prior generative
model [29], using attribute-augmented models for link generation
and addition , which are key building blocks for such generative
models. As we will show, this provides more realistic synthetic
SAN that closely matches the Google+ SAN.

5.1 Building Block 1:
Attribute-Augmented Preferential Attach-
ment

Leskovec et al. showed that the Preferential Attachment (PA) [5]
is a suitable choice for creating edges [29]. The key idea in PA is
that a new node u is likely to connect to an existing node v with
a probability proportional to v’s degree. As we saw earlier, users
who share attributes are also more likely to be connected. Thus, we
consider two ways to augment the PA model:

• Power Attribute Preferential Attachment (PAPA):
f(u, v) ∝ di(v)α(1 + a(u, v)β)

• Linear Attribute Preferential Attachment (LAPA):
f(u, v) ∝ di(v)α(1 + β · a(u, v))

Here, f(u, v) is the probability with which social node u adds
a link to social node v, di(v) is the indegree of v and a(u, v) is
the number of common attributes that social nodes u and v share.3

Notice that when α = β = 0, both reduce to a uniform distribution
(i.e., v is sampled uniformly at random) and when α=1,β=0 both
reduce to the PA model.

The relative improvement of a model with parameter α, β over
the PA model is defined as lPA−l(α,β)

lPA
, where l denote the log-

likelihood of the model with respect to the empirically observed
Google+ SAN. Figure 15 shows the relative improvements of these
models over the PA model for varying values of α, β. First, LAPA
models perform better than PAPA models, which indicates that at-
tribute likely influence friend requests in a linear way. Second, the
PA model (α =1, β = 0) is 7.9% better than a uniform random
model (α =0, β = 0). A LAPA model with α =1 and β = 200
achieves a further 6.1% improvement over the PA model. Third,
α = 1 achieves the best loglikelihood for any given β, which in-
dicates that social degree has a linear effect on friend requests. In
3In a more general setting, we can also weight attribute types dif-
ferently; e.g., Employer is stronger than City.

Algorithm 1: Social-Attribute Network Model
1 T, simulated time steps
2 Initialization.
3 for 1 ≤ t ≤ T do
4 Social node arrival. Sample a set of new social nodes Vt,new .
5 for vnew ∈ Vt,new do
6 Attribute degree sampling. Sample the number of attributes

na(vnew) for vnew from a lognormal distribution.
7 for 1 ≤ i ≤ na(vnew) do
8 Attribute linking.
9 end

10 First outgoing linking.
11 lifetime sampling.
12 sleep time sampling.
13 end
14 Collect woken social nodes Vt,woken.
15 for vwoken ∈ Vt,woken do
16 Outgoing linking.
17 sleep time sampling.
18 end
19 end

summary, we conclude that there is a combined linear effect of both
social degree and attributes.

5.2 Building Block 2:
Attribute-Augmented Triangle-Closings

Triangle closing, where a node u selects a node v from its 2-hop
neighbors and adds an edge, is an essential part of many genera-
tive network models [29, 61, 33, 2, 43, 53]. We explore if node
attributes can improve triangle closing.

In the context of SAN, we can consider two types of triangle-
closing: one is closing a triangle with no attribute node involved
(e.g., u4 → u2 in Figure 1), and the other is closing a triangle
which includes an attribute node (e.g., u1 → u2 in Figure 1). Fol-
lowing prior work, we refer them as triadic and focal closure re-
spectively [25]. In the friend requests we observe in Google+, 84%
percent are triadic (common friend), 18% percent are focal (com-
mon attribute), and 15% percent are cases where the nodes share
both common friends and common attributes (e.g., u6 → u5 in
Figure 1).

This suggests the importance of incorporating attributes in the
triangle closure. To this end, we consider three models:
• Baseline: Select a social neighbor v within a 2-hop radius uni-

formly at random.
• Random-Random (RR): Select a social neighbor w ∈ Γs(u)

uniformly at random, and then select a social neighbor v ∈
Γs(w) uniformly at random which is shown to have very good
performance in previous work [29].
• Random-Random-SAN (RR-SAN): select a neighborw ∈ Γs(u)∪

Γa(u) uniformly at random, and then select a social neighbor
v ∈ Γs(w) uniformly at random.4

We compare these models using friend requests that are triadic clo-
sures, focal closures, or both. Our experimental results confirm
that RR model performs 14% better than the Baseline model [29],
and our RR-SAN model performs 36% better than RR model. This
confirms that attributes play a significant role in the triangle-closing
phenomenon as well and has natural implications for applications
such as link prediction and friend recommendation.

5.3 Our Generative Model for SAN
4We also tried a weighted model where we select neighbors pro-
portional to link weights. For brevity, we do not show this because
it performs similarly.



Our stochastic process models several key aspects of SAN evo-
lution: node joining, how nodes issue outgoing links and receive
incoming links, and how they link to attribute nodes. The key dif-
ferences from prior work [29] are the two building blocks we de-
scribed earlier: Linear Attribute Preferential Attachment (LAPA)
and Random-Random-SAN (RR-SAN) triangle-closing.

Here, nodes arrive at some pre-determined rate. On arrival, each
node picks an initial set of attributes and social neighbors (using the
LAPA model). After joining the network, each node subsequently
“sleeps” for some time, wakes up, and adds new links based on the
RR-SAN model. We describe the model formally in Algorithm 1
and discuss each step next. From the analysis below, we find that
the key step for generating lognormal social outdegree distribution
is to make the lifetime of nodes follow a truncated normal distri-
bution.

Initialization: The SAN is initialized with a few social and at-
tribute nodes and links. We observed that the starting point has
no detectable influence when the number of initialization nodes is
small compared to the overall network. We currently use a com-
plete social-attribute network with 5 social nodes and 5 attribute
nodes.

Social node arrival: Social nodes arrive as predicted by a node
arrival function N(t), which could be estimated from real social
networks. In our simulations, we simply let N(t) = 1 modeling
each node arrival as a discrete time step.

Attribute degree: Each node picks some number of attributes sam-
pled from a lognormal distribution with mean µa and variance σ2

a.

Attribute linking: Each new social node vnew with na(vnew ) at-
tributes, we connect it to na(vnew ) attribute nodes with the stochas-
tic process defined as follows: for each attribute, with probability p,
a new attribute node a is generated; otherwise an existing attribute
node a is chosen with probability proportional to its social degree.

First outgoing links: Each new node issues an outgoing link to a
social node according to the LAPA model.

Lifetime sampling: The lifetime l of vnew is sampled from a trun-
cated normal distribution, i.e., p(l) ∝ exp(− (l−µl)

2

2σ2
l

) for l ≥ 0.
(Prior models use an exponentially distributed lifetime value [29,
61].)

Sleep time sampling: Sleep time s of any node v with outdegree
do can be sampled from any distribution with mean ms/do. Our
model only depends on mean sleep time. The intuition of making
mean sleep time reversely proportional to outdegree is that a node
with larger outdegree has higher tendency to issue outgoing links.
(Prior models assume a power-law with cutoff distributed lifetime
value [29, 61].)

Outgoing linking. Each woken social node vwoken issues a new
outgoing link according to our RR-SAN triangle-closing model.

5.4 Theoretical Analysis
By design, the attribute degree distribution of social nodes fol-

lows a lognormal distribution. Next, we show via analysis that the
outdegree of social nodes and the social degree of attribute nodes
follow a lognormal and power-law distribution respectively. For
brevity, we provide a high-level sketch of the proofs.

Let φ(x) and Φ(x) denote the probability density function and
cumulative density function of standard normal distribution. Let
γl = −µl

σl
, g(γ) = φ(γ)

1−Φ(γ)
and δ(γ) = g(γ)(g(γ)− γ).

THEOREM 1. If the sleep time is sampled from some distribu-
tion with mean ms/do, then the social out degrees of SANs gen-
erated by our model follow a lognormal distribution with mean
(µl + σlg(γl))/ms and variance σ2

l (1− δ(γl))/m2
s.

PROOF. For any social node v, assume its final outdegree isDo,
then we have

D∑
do=1

s(do) ≤ l,

where s(do) is the random sleep time whose mean isms/do. Thus,
with mean-field approximation, we obtain

ms

D∑
do=1

1

do
≤ l.

Moreover, according to Euler’s asymptotic analysis on harmonic
series, we have

D∑
do=1

1

do
≈ lnDo.

That is, lnDo ≈ l/ms. Lifetime l is also a normal distribution
truncated for l ≥ 0, thus having mean µl + σlg(γl) and variance
σ2
l (1− δ(γl)). Thus, lnDo follows a truncated normal distribution

with mean µo = (µl + σlg(γl))/ms and variance σ2
o = σ2

l (1 −
δ(γl))/m

2
s. So Do follows a lognormal distribution with mean µo

and variance σ2
o .

Next, we derive the distribution of social degree of attribute nodes
using mean-field rate equations [6].

THEOREM 2. The social degrees of attribute nodes in the SANs
generated by our model follow a power-law distribution with expo-
nent 2−p

1−p .

PROOF. Without loss of generality, we assume one attribute link
joins the SAN at each discrete time step. Let Di denote the social
degree of the attribute node i that joins the network at time ti. Ac-
cording to the stochastic process in our algorithm, we have

dDi
dt

=
(1− p)Di∑

iDi
=

(1− p)Di
t+m0

,where m0 is the initial number of attribute links. Solving this or-
dinary differential equation with initial condition Di = 1 at t = ti
gives us

Di = (
t+m0

ti +m0
)(1−p).

So the probability of Di < D is

Pr(Di < D) = 1− Pr(ti +m0 ≤ (t+m0)D
− 1

1−p ).

According to our model, Pr(ti) has a uniform distribution over the
set {1, 2, · · · , t}. Thus we obtain

Pr(Di < D) = 1− (t+m0)D
− 1

1−p −m0

t
.

Then the distribution of Di can be calculated as

Pr(D) =
dPr(Di ≤ D)

dD
=

t+m0

t(1− p)D
− 2−p

1−p .

As t → ∞, we obtain Pr(D) ∝ D
− 2−p

1−p . So the social degrees
of attribute nodes follow a power-law distribution with exponent
2−p
1−p .
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(g) Attribute degree of social nodes
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(h) Social degree of attribute nodes

Figure 16: Degree distributions of synthetically generated SAN using our model in (a)-(d) vs. Zhel shown in (e)-(h).

Mitzenmacher [40] did a comprehensive study on generative mod-
els (e.g., PA, multiplicative models, random monkey) for power-
law and lognormal distributions. In this work, we have proposed
two new generative models.

6. EVALUATION
In this section, we validate our SAN generative model. Because

the SAN area is still very nascent there are few standard models
of comparison. We pick the closest generative model by Zheleva
et al [61]. Note that their model is actually orthogonal to ours since
it’s modeling dynamic node attributes while ours is modeling static
node attributes. Furthermore, their original model generates undi-
rected social networks. In order to compare with our model and di-
rected Google+ SANs, we extend their model to generate directed
social networks5. We refer to the extended model as the Zhel model
throughout this section. We start with network metrics, including
single-node degree distribution, joint degree distribution and clus-
tering coefficient. Then, following the spirit of [43], we also evalu-
ate our model using real application contexts.

For comparison, we use the Google+ snapshot crawled on July
15, 2011, which has roughly 10 million nodes and we believe it is
representative of Google+ SAN. Using this Google+ snapshot, we
run a guided greedy search to estimate appropriate parameters for
our model and Zhel to generate synthetic SAN that best match the
Google+.

6.1 Network Metrics
In this section, we qualitatively compare our model to the Zhel

model, and demonstrate that our model can generate synthetic SAN
that better reproduces various network metrics closer to Google+
SAN.

Degree distributions: We first examine the degree distributions of
the synthetic SAN generated by our model and the Zhel model in

5Extending their model is straightfoward. For instance, when the
original model issues an undirected link, we change it to be a di-
rected outgoing link.
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(d) Clustering coefficient

Figure 17: Joint degree and clustering coefficient distributions of
our model (a)–(b) vs. Zhel in (c)–(d).

Figure 16. The most visually evident result looking at Figure 16a
and Figure 16b is that our model can generate synthetic networks
with social indegree and outdegree following lognormal distribu-
tions similar to the Google+ SAN that we saw in Figure 5. In con-
trast, Figure 16f and Figure 16e confirm that the Zhel model gen-
erates indegree and outdegree following power-law distributions.
Similarly, comparing Figure 16c and 16g to Figure 10a, the at-
tribute degree of social nodes in our model follows the lognor-
mal distribution that matches that of the Google+ SAN, whereas
the Zhel model generates attribute degrees that follow a power-
law distribution. Finally, Figure 16d and 16h confirm that both our
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Figure 18: The effect of LAPA and focal closure.

model and Zhel generate social degrees of attribute nodes that fol-
low power-law distribution, which is again consistent with Google+
SAN from Figure 10b.

Joint degree distributions: The ability to mirror more fine-grained
properties beyond the degree distributions has been shown to be a
key metric for evaluating generative models [37]. Thus, we look
at the joint degree distribution approximated by degree correla-
tion function knn in Figure 17a and 17c for our model and Zhel.
Compared to Figure 12, we see that the JDD of attribute nodes in
our model generated SAN matches Google+ SAN much better than
Zhel. We observe similar pattern for JDD of social nodes.

Clustering coefficient: Fig. 17b and Fig. 17d shows the clustering
coefficient distributions of synthetic SANs generated by our model
and Zhel, respectively. When comparing them to Fig. 9a we see
that our model generates synthetic SAN with both social and at-
tribute clustering coefficient distributions matching well to those of
Google+ SAN, which is not the case for Zhel.

Significance of building blocks: Recall that our model has two
key building blocks that extend preferential attachment via LAPA
and also extending triangle closing via focal closure. A natural
question is what each of these components contribute toward the
overall generative model.

First, we investigate how LAPA impacts the structure of the gen-
erated SAN in our model. To this end, we consider an interme-
diate model with the classical PA (but with the RR-SAN enabled)
and compute the previous metrics for SANs generated by this in-
termediate model. We find that all metrics except the distribution
of social indegree are qualitatively the same. Figure 18a shows
that the distribution of social indegree of the synthetic SAN gener-
ated by our intermediate model is very close to a power-law distri-
bution, different from the lognormal distribution generated by our
full model shown in Figure 16b and derived from the real Google+
SAN shown in Figure 5. This suggests that the LAPA component
is necessary for modeling a key aspect of the Google+ SAN.

Second, we investigate the impact of RR-SAN. The key met-
ric impacted by the focal closure component of RR-SAN is the
attribute clustering coefficient. Figure 18b shows the social and
attribute clustering coefficients of synthetic SANs generated by our
model without RR-SAN (with classical RR enabled). Looking at
Figure 17b and Figure 18b together, we see that RR-SAN has a
significant impact on the attribute clustering coefficient.

These results confirm both attribute-augmented building blocks,
LAPA and RR-SAN, play important but complementary roles in
our model in generating synthetic SAN that closely mirrors the real
Google+ SAN.

6.2 Application Fidelity
Next, we use two real-world application contexts to evaluate the

fidelity of our generative model and the Zhel model with respect to
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Figure 19: Application fidelity of our model. (a) Sybil defense:
SybilLimit false negatives as a function of number of compromised
nodes. (b) Social network based anonymity: Probability of end-to-
end timing analysis as a function of number of compromised nodes.

a real Google+ snapshot. In each case, we use the metric of interest
relevant to each application. Note that all these applications only
rely on the social structure.

Sybil defense: In a Sybil attack [14], a single entity emulates the
behavior of a large number of identities to compromise the secu-
rity and privacy properties of a system. Sybil attacks are of par-
ticular concern in decentralized systems, which lack mechanisms
to vet identities and perform admission control. Several recent
works have proposed the use of social trust relationships to miti-
gate Sybil attacks [14, 59]. Next, we show the fidelity of our model
using a representative social network based Sybil defense mecha-
nism called SybilLimit [59].

In order to prevent an adversary from obtaining a large number
of attack edges (edges between compromised and honest users),
SybilLimit bounds the effective node degree in the social network
topology. Following their guidelines, we also imposed a node de-
gree bound of 100 in evaluating their proposal on the different
SANs. Figure 19a depicts the number of Sybil identities that an ad-
versary can insert, as a function of number of compromised nodes
in the network. We compromised the nodes uniformly at random,
and set the SybilLimit parameter w = 10. The parameter fc gov-
erns the attribute link weight in our RR-SAN component; fc = 0
means no focal closure.

We can see that (a) SybilLimit results using the synthetic topol-
ogy generated by our model are a close match to the real Google+
data, and (b) our model outperforms the baseline approach (Zhel
model). For example, when the number of compromised nodes
is 200,000 the average number of Sybil identities in the Google+
topology is about 25.3 million, while our model predicts 24.5 mil-
lion (error of 3.1% using fc = 0.1). In contrast, the baseline ap-
proach has almost 4× worse error with a prediction error of 12.5%.
This shows the importance of using attribute information to influ-
ence the structure of the social structure (the Zhel model only uses
the social structure to influence the attribute structure.)

Anonymous communication: Anonymous communication aims
to hide user identity (IP address) from the recipient (destination)
or from third parties on the Internet such as autonomous systems.
The Tor network [12] is a deployed system for anonymous com-
munication that serves hundreds of thousands of users a day. It
is widely used by political dissidents, journalists, whistle-blowers,
and even law enforcement/military. Recent work [22, 11] has pro-
posed leveraging social links in building anonymous paths for im-
proving resistance to attackers. For example, the Drac [11] system
selects proxies (onion routers) by performing a random walk on the
social network. For low-latency communications, if the first and the
last hops of the forwarding path (onion routing circuit) are compro-



mised, then the adversary can perform end-to-end timing analysis
and break user anonymity. Figure 19b depicts the probability of
end-to-end timing analysis when random walks on social networks
are performed for anonymous communication, using the Google+
social network and our synthetic network. Similar to our Sybil-
Limit experiments, we compromise nodes uniformly at random in
the network, and impose an upper bound of 100 on the node de-
gree. Again, we can see the accuracy of our model, as well as the
improvement over prior work.

6.3 Summary
Via evaluating our model with respect to network metrics and

real-world applications, we find that:
• Our model can reproduce SANs that well match Google+ SAN

with respect to various network metrics (e.g., degree distribu-
tions, joint degree distributions and clustering coefficients.), but
the Zhel model cannot match several metrics (e.g., social de-
gree distributions, joint degree distributions and clustering co-
efficient.).
• Our model also performs better than the Zhel model for real-

world applications such as Sybil defense and anonymous com-
munication.
• The two attribute-augmented building blocks, i.e., LAPA and

RR-SAN, play important but complementary roles in our model.

7. DISCUSSION
Using attributes to strengthen defenses: Our evaluation largely
focuses on how our model better matches the real-world SAN. We
hypothesize that several attack defenses (e.g., Sybil proofing) can
also be enhanced by taking into account the attribute structure. For
example, we could check if the attribute structure of the nodes
matches normal nodes, or even if an attacker manages to obtain
a “compromised” edge to one node we can limit the influence of
this compromised edge by checking the attribute structure.

LAPA Computation: The LAPA model as described requires a
costly linear time (in number of nodes) step when a new node ar-
rives. This is because we have to consider the number of common
attributes between the new node and each current node, unlike PA
which only needs the global degree distribution. Fortunately, we
can approximate LAPA using a practical heuristic. The high-level
idea is to pick one of the new node’s attributes at random and use
PA within the nodes having this attribute. This approximates LAPA
as nodes sharing more attributes are more likely to get selected.

Dynamic attributes: Our model currently focuses on static at-
tributes that nodes pick when they join the SAN. In our future work,
we plan to incorporate dynamic attributes, and investigate whether
the static attribute structure also influences the selection of dynamic
attributes. Note that static attributes influence the social structure in
our model while the dynamic attributes are influenced by the social
structure in the model from Zheleva et al [61].

Parameter inference: We currently use a guided greedy search
to empirically estimate model parameters. While this works quite
well, we plan to develop a more rigorous parameter inference algo-
rithm based on maximum-likelihood principle [31, 57].

Parsimoniousness of our model: In § 6, we have shown that each
component of our model is necessary. However, it’s an interesting
future work to design a more parsimonious model.

Implications for social network designs: Our results that users
sharing common employer attributes are more likely to be linked
than users sharing other attributes can help design a better friend

recommendation system, which is a very fundamental component
of online social networks.

Relationship to heterogeneous networks: Our SAN can be viewed
as a heterogeneous network since it consists of multiple types of
nodes and links. Heterogeneous networks are shown recently to
work better than traditional homogeneous networks for various data
mining tasks such as link prediction [17, 58, 48, 49], attribute in-
ference [17, 58] and community detection [51, 50, 62]. It is an
interesting future work to generalize our new attribute-related met-
rics and generative model to other heterogeneous networks.

8. RELATED WORK
Given the growing role of social networks in users’ lives and

the potential for using such insights for building better systems
and applications, there is a rich literature on measuring and mod-
eling social networks. Next, we discuss our work in the context of
this related work. At a high-level, our specific new contributions
are: (1) we characterize the evolution of a new large-scale network
(Google+), and (2) we provide measurement-driven insights and
models on the impact of attributes on social network evolution.

Measuring social networks: Many prior efforts characterize so-
cial networks using the network metrics we also describe in §3 [26,
28, 29, 38, 25]. Most of these focus on static snapshots; a few no-
table work also focus on evolutionary aspects similar to our work [3,
56, 4]. With multiple Google+ snapshots crawled around its public
release, Schioberg et al. [46] studied a few network metrics, geo-
graphic distribution of the users and links, and correlation of users’
public information of Google+.

Concurrently, Gonzalez et al. [18] characterize several key fea-
tures of Google+ during its first 10 months, and compare them to
those of Facebook and Twitter. Using a static Google+ snapshot
crawled after its public release, Magno et al. [36] identify the key
differences between Google+ and Facebook and Twitter, study the
adoption patterns of Google+ in different countries, and character-
ize the variation of privacy concerns across different cultures. Zhao
et al. [60] study the early evolution of the Renren social network,
and analyze its network dynamics at different granularities to de-
termine their influence on individual users. While we follow the
spirit of these works, our work is unique in terms of the specific
dataset (i.e., three phases of Google+), the scale of the network,
and the fact that we had a singular opportunity to study the evolu-
tion across different phases.

There has been recent realization of the importance of user at-
tributes in characterizing social networks [38, 61]. These focus on
the influence of social structure on dynamic node attributes (e.g.,
interest groups). Our work focuses on the orthogonal dimension of
analyzing and modeling the influence of static node attributes on
social structure formation using Google+.

Modeling social networks: There are two broad classes of models
for generating social networks: static and dynamic. Static models
try to reproduce a single static network snapshot [15, 55, 37, 47].
Dynamic models can provide insights on how nodes arrive and cre-
ate links; these include models such as preferential attachment [5],
copying [24], nearest neighbor [2], forest fire [33]. Sala et al. [43]
evaluated such models using both network metrics and application
benchmarks and showed that the nearest neighbor model outper-
forms others. The dynamic/generative model by Leskovec et al.
mimics the nearest neighbor model in a dynamic setting [29], and
thus we use it as our starting point in §5, However, these models are
known to generate networks with power-law degree distributions.
Many social networks including Google+, however, exhibit lognor-
mal degree distributions [16, 32, 34]. Our dynamic model extends



these prior work to provably generate a lognormal distribution for
social outdegree. Our model also provides a more general frame-
work by capturing both social and attribute structure.

Modeling social-attribute networks: There has been relatively
little work on generating SANs, though a few recent work jointly
generating both social structure and node attributes can be viewed
as SAN models; the most relevant work is from Zheleva et al. [61]
and Kim and Leskovec [23]. Zheleva et al. [61] focus on dynamic
attributes; their model generates undirected networks with power-
law distribution for social degree and non-lognormal distribution
for attribute degree (see Figure 16). Kim and Leskovec model
the social and attribute structure simultaneously [23]. Here, both
the social degree of attribute nodes and attribute degrees of social
nodes follow binomial distribution, which differs from empirically
observed SANs. Our model can generate SANs that we confirm
through both analysis and simulations to be consistent with real
SANs.

9. CONCLUSION
Using a unique dataset collected by crawling Google+ since its

launch in June 2011, we provide a first-principled understanding of
the attribute structure and its impact on the social structure and their
evolutions with the SAN model. We observe several interesting
phenomena in the structure and evolution of Google+. For exam-
ple, the social degree distributions are lognormal, the assortativity
is neural while many other social networks have positive assortativ-
ities, and the distinct phases in the evolution manifest themselves
in the network structure. We also provide new metrics for charac-
terizing the attribute structure and demonstrate that attributes can
significantly impact the social structure. Building on these empir-
ical insights, we provide a new generative model for SANs and
validate that it is close to the real Google+ SAN using both net-
work metrics and real application contexts. We believe that our
work is one of the first steps in this regard and that there are several
interesting directions for future work to harness the power of us-
ing the attribute structure for designing better social network based
systems and applications.
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APPENDIX
A. A CONSTANT TIME ALGORITHM FOR

APPROXIMATING CLUSTERING COEF-
FICIENTS

Before going to details of the algorithm and analysis, we intro-
duce a few notations. In both directed or undirected SANs, a triple
t consists of three nodes (v, u, w) satisfying v, w ∈ Γs(u), where

Algorithm 2: Constant Time Approximate Algorithm for Com-
puting the Average Clustering Coefficient

Input: (SAN,Ω,K), where SAN = (Vs, Va, Es, Ea), Ω is the set
of nodes whose average clustering coefficient CΩ is
approximated and K is the number of samples needed.

Output: Approximate average clustering coefficient C̃Ω.
1 begin
2 L←− 0
3 k ←− 0
4 while k < K do
5 k ←− k + 1
6 Sample a node u uniformly at random from Ω
7 Sample a pair of nodes v and w uniformly at random from

u′s social neighbors Γs(u)
8 L←− L + F (v, u, w)

9 end
10 C̃Ω ←− L/(2IK)

11 end

u is called the center and v, w are called the endpoints of t. More-
over, αt and βt denote respectively the center node and the two
endpoints of t.

For a directed SAN and a set of triples T , we define a mapping
F : T −→ {0, 1, 2}, where F (t = (v, u, w)) = 0 if v and w
are not connected, F (t = (v, u, w)) = 1 if they are connected
by one directed link and F (t = (v, u, w)) = 2 if they are recip-
rocally linked. For an undirected SAN, the mapping is defined as
F : T −→ {0, 1}, where F (t = (v, u, w)) = 0 if v and w are
not connected, otherwise F (t = (v, u, w)) = 1. Let I be an in-
dicator variable of the directedness of a SAN, where I = 0 when
the SAN is undirected, otherwise I = 1. With the indicator vari-
able I , we have 0 ≤ F (t) ≤ 2I , which is useful for deriving the
approximation bounds in the follows.

For any set of nodes Ω, their average clustering coefficient can be
represented asCΩ = 1

|Ω|
∑
u∈Ω c(u) = 2−I

∑
t∈TΩ

1
|Ω|τ(αt)

F (t),
where TΩ = {t|αt ∈ Ω} and τ(αt) = 1

2
|Γs(αt)|(|Γs(αt)| − 1)

is the number of triples whose center node is αt. If t is a uni-
formly distributed random variable over Ω, then we have CΩ =
2−IE[F (t)]. This observation informs us the design of our ap-
proximate algorithm, which is shown in Algorithm 2. Our algo-
rithm computes the average social clustering coefficient when set-
ting Ω = Vs, and the average attribute clustering coefficient when
setting Ω = Va. Note that our algorithm can also be used to com-
pute average clustering coefficient distribution with respect to node
degrees. The following theorem bounds the error of our algorithm.

THEOREM 3. With the number of samples K = d ln2ν
2ε2
e, the

approximated average clustering coefficient C̃Ω output by our al-
gorithm satisfies |C̃Ω − CΩ| ≤ ε with probability at least 1− 1

ν
.

PROOF. Assume t1, t2, · · · , tK are K independently and uni-
formly distributed random variables over the triple set TΩ. Then
we have CΩ = E[ 1

2IK

∑K
i=1 F (ti)]. According to Hoeffding’s

bound [20], we obtain

Pr(| 1

K

K∑
i=1

F (ti)− E[
1

K

K∑
i=1

F (ti)]| ≥ 2Iε) ≤ 2e−2Kε2 .

Thus,

Pr(|C̃Ω − CΩ| ≤ ε) ≥ 1− 2e−2Kε2 .

So we get K = d ln2ν
2ε2
e by setting ν = 2e−2kε2 .


