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Abstract—We study the problem of reconstructing a sparse
signal from a limited number of linear measurements, when
a part of its support and the signal estimate on it are known.
The support and signal estimate can be obtained from prior
knowledge, e.g., in a real-time dynamic MRI application, they
could be the support and signal estimate from the previous time
instant. We propose regularized Modified Basis Pursuit (Reg-
mod-BP). We also provide the exact reconstruction conditions
and we argue that they can be weaker than modified-CS. We
then bound its reconstruction error when exact reconstruction
can not happen and we show that the bound is much smaller
than modified-CS when the available measurements are few.
We also use Monte Carlo to verify that reg-mod-BP has better
exact reconstruction conditions than other methods with very few
measurements. We also compare the average errors when exact
reconstruction can not be achieved and show that the errors are
smaller than other methods.

Index Terms—Compressive sensing, Sparse reconstruction

I. I NTRODUCTION

In this work, we study the problem of sparse reconstruction
with partial, and partly erroneous, knowledge of support and
of the signal values on the “known” support. In practical
applications, this may be available from prior knowledge, or
in recursive reconstruction applications, e.g. recursivedynamic
MRI, and one can use the support and signal estimate from
the previous time instant for this purpose[2].

The problem of sparse reconstruction with partial knowl-
edge of support was first simultaneously introduced in our
work (modified-CS) [1] and in [9]. An earlier work [8] pro-
posed an approach similar to modified-CS but did not analyze
it and also did not show careful numerical or real experiments
either. Denote the support “knowledge” byT . Modified-CS
finds a signal that is sparsest outside ofT and satisfies the
data constraint. The work of [9] puts a probabilistic prior on
the support and obtains a solution. Both [1] and [9] obtain
exact reconstruction conditions for the respective approaches.

When both partial support knowledge,T , and signal value
estimates on this support,µT are available, modCS can be
augmented by also imposing a constraint on theℓ∞ distance of
the solution fromµT . We refer to this as “reg-mod-BP”. In this
work, we derive its exact reconstruction condition and bound
the reconstruction error. We provide both exact reconstruction
comparisons with existing work as well as reconstruction error
comparisons. We also show comparisons with the work of [9]

and with modCS. Other somewhat related work includes [7],
[10], [11], [12].

This paper is organized as follows. We introduce reg-mod-
BP in Sec. II. We use different strategies to obtain the exact
reconstruction conditions and reconstruction error bounds. The
exact reconstruction condition is obtained using a similarway
as [1] in Sec. III. In Sec. IV, we bound the reconstruction
error when exact reconstruction can not occur in a fashion
as in [5]. We do not use the method of [5], [6] to get
exact reconstruction conditions in Sec. III because it can
not give better conditions. Finally, simulations are shown
to demonstrate reg-mod-BP gets better exact reconstruction
conditions and smaller reconstruction errors in Sec. V.

II. REGULARIZED MODIFIED BASIS PURSUIT

In [1], we proposed modCS which only used partially
known support. ModCS solves

min
β

||βT c ||1, s.t. y = Aβ (1)

However, modCS puts no constraint onxT . Thus, when
few measurements are available,xT can be arbitrarily large
resulting in very bad reconstruction. Hence, we propose reg-
mod-BP to also constrainxT by bounding‖xT − µT ‖∞, i.e.

min
β

||βT c ||1, s.t. y = Aβ, ‖βT − µT ‖∞ ≤ ρ (2)

whereT is the support estimate andµT is the signal estimate
on T . Let N denote the support ofx. Define∆ , N \ T and
∆e , T \N . The cost function is to find the sparsest solution
outsideT and the first constraint gives the data constraint
while the second one imposes the closeness toµ alongT .

III. E XACT RECONSTRUCTION

In this section, we try to obtain exact reconstruction con-
ditions for reg-mod-BP that are weaker than those for mod-
CS in terms of the number of measurements required. The
key idea is to use the following fact which is observed from
simulation experiments. If one or more of the prior constraints,
‖βT − µT ‖∞ ≤ ρ, are active, then reg-mod-BP needs fewer
measurements for exact reconstruction. Hence, let us define
the following active setsTa1

,Ta2
and the inactive setTin.

Ta1
, {i ∈ T : xi − µi = ρ}

Ta2
, {i ∈ T : xi − µi = −ρ}

Tin , {i ∈ T : |xi − µi| < ρ}
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and their sizesk , |T |, u , |∆|, kin , |Tin|. Then we can
obtain the following Theorem.

Theorem 1 (Exact Reconstruction Conditions): Given a
sparse vector,x, whose support,

N = T ∪∆ \∆e (3)

where∆ andT are disjoint and∆e ⊆ T . Also, x satisfies

y = Ax (4)

Let

M , I −ATin
(A′

Tin
ATin

)−1A′
Tin

(5)

x is the unique minimizer of (2) if
1) µ is such that

Ta1
⊆ T+ = {i ∈ T : A′

iMA∆(A
′
∆MA∆)

−1sgn(x∆) > 0}
Ta2

⊆ T− = {i ∈ T : A′
iMA∆(A

′
∆MA∆)

−1sgn(x∆) < 0}
‖µTin

− xTin
‖∞ < ρ (6)

2) n is large enough such that

δk+u < 1 andδ2u + δk + θ2k,2u < 1

andak(2u, u) + akin
(u, u) < 1 (7)

whereak(S, Š) ,
θŠ,S +

θŠ,k θS,k

1−δk

1− δS − θ2
S,k

1−δk

(8)

Recall thatk , |T |, u , |∆|, kin , |Tin|.
The proof is given in Appendix. Notice that modCS is reg-

mod-BP with ρ = ∞. Thus, for modCS,kin = k. With
ρ = ∞ and kin = k, the above result is the same as that
of Theorem 1 of [1]. Whenρ < ∞, and if one or more of the
prior constraints are active, thenkin < k. In this case, reg-
mod-BP needs weaker conditions on the measurement matrix
than modCS. But, it also needs that (a) the constraint is active
on a part ofT and (b) the active setsTa1

and Ta2
satisfy

condition (6). In other words, it needs a very specific type of
prior information is available. This fact is also verified byour
simulations.

Requiring thatµ satisfy these conditions is somewhat re-
strictive. But as we show in the next section and also in our
simulations, the error bound for reg-mod-BP is smaller than
that for modCS (and for other methods) even without requiring
any constraint to be active.

IV. RECONSTRUCTIONERRORBOUND

When exact reconstruction cannot be achieved, we want to
bound the error ofh = x̂−x. We adapt the approach of [5], [6]
to bound theℓ2 norm of the error‖h‖2. First consider modCS,
i.e. (1). When exact reconstruction condition does not hold,the
following lemma provides one way to bound the error.

Lemma 1: Pick a ∆̃ ⊆ ∆ and a T̃ ⊆ T such that
δ|T̃ |+2|∆̃| <

√
2 − 1. Denote x̂ as the unique minimizer of

(1), then

‖x− x̂‖2 ≤
4
√

1 + δ|T̃ |+2|∆̃|

1− (
√
2 + 1)δ|T̃ |+2|∆̃|

ǫ+
1− δ|T̃ |+2|∆̃|

1− (
√
2 + 1)δ|T̃ |+2|∆̃|

·
2‖x(T̃∪∆̃)c‖1

√

˜|∆|
(9)

As long as the truex is always part of the feasible set of
(2), i.e. as long as‖xT − µT ‖∞ ≤ ρ, the above lemma also
holds for reg-mod-BP. In the next lemma we also use this
prior constraint to obtain another error bound for reg-mod-BP,
which is tighter than that of Lemma 1 whenρ is small enough,
i.e. prior information is strong.

Lemma 2: Let x̂ solve (2) and‖xT − µT ‖∞ ≤ ρ. If δ2u ≤√
2− 1 andδk+2u < 1 hold, then

‖x− x̂‖2 ≤ (
2
√
kδk+2u

1− (
√
2 + 1)δ2u

+ 2)ρ (10)

Combining the above two lemmas, we have the following
Theorem to bound the error for reg-mod-BP.

Theorem 2 (Reconstruction Error Bound): Let x̂ solve (2).
If ‖xT − µT ‖∞ ≤ ρ and if δ2u ≤

√
2 − 1 and δk+2u < 1,

then

‖x− x̂‖2 ≤ min{B1, B2}, where

B1 , (
2
√
kδk+2u

1− (
√
2 + 1)δ2u

+ 2)ρ

B2 , min
T̃ ⊆ T, ∆̃ ⊆ ∆

δ|T̃ |+2|∆̃| <
√

2 − 1

1− δ|T̃ |+2|∆̃|

1− (
√
2 + 1)δ|T̃ |+2|∆̃|

·
2‖x(T̃∪∆̃)c‖1

√

˜|∆|

The complete proof is in the Appendix. Clearly the bound for
modCS isB2 since modCS is a special case of reg-mod-BP
whenρ = ∞ andB1 = ∞ in this case. Therefore, reg-mod-
BP bound, which ismin{B1, B2}, will never be larger than
modCS bound. One particular case is whenδk+2u <

√
2− 1

and in this caseB2 = 0 which implies that exact reconstruc-
tion occurs for both modCS and reg-mod-BP. However, when
the number of measurements is very small,δk+2u will be much
larger than

√
2 − 1. Thus, |T̃ | and |∆̃| in modCS boundB2

must be small such thatδ|T̃ |+2|∆̃| <
√
2 − 1. However, the

set (T̃ ∪ ∆̃)c becomes larger resulting in
‖x(T̃∪∆̃)c‖1√

˜|∆|
to be

very large. Hence, modCS bound will be very large. But for
reg-mod-BP, if the signal estimateµT is good which allows a
small ρ, thenB1 ≪ B2 resulting a much smaller bound than
modCS.

V. EXPERIMENTAL RESULTS

In this section, we use simulations to verify the conclusions
from previous sections. We compare reg-mod-BP with modCS
and weightedℓ1 reconstruction as well as CS. Weightedℓ1
reconstruction is to solve

min
β

‖βT c‖1 + γ‖βT ‖1 s.t. y = Aβ (11)

We first demonstrate that reg-mod-BP can obtain exact recon-
struction with much fewer measurements under which other
methods can not. Then, we will show the reconstruction errors
are smaller for reg-mod-BP than other methods.

A. Exact Reconstruction Comparisons

We compare the smallest number of measurements for
exact reconstruction of reg-mod-BP with that of modCS and
weightedℓ1 reconstruction. We use the following procedure to
compare all four algorithms when exact reconstruction always
occurs, for a givenA (i.e. we average over the joint distribution
of x and y given A). In the following simulation steps, the
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notation z ∼ iid(±a) means that we generatez as an i.i.d.
random vector and each element is either+a or −a with
probability 1/2, while z ∼ unif(a, b) generates a uniform
random variable distributed in[a, b].

1) Fix signal length,m = 256, its support size,|N | =
0.1m = 26 andu = 0.04|N |, e = 0.1|N |. Selectn, .

2) Generate then × m random-Gaussian matrix,A (gen-
erate ann × m matrix with independent identically
distributed (i.i.d.) zero mean Gaussian entries and nor-
malize each column to unitℓ2 norm)

3) Repeat the following tot= 100 times

a) Generate the support,N , of size s, uniformly at
random from[1, n].

b) Generate∆ of size u uniformly at random from
the elements ofN .

c) Generate∆e of sizee, uniformly at random from
the elements of[1, n] \N .

d) Let T = N ∪∆e \∆. GeneratexN∩T ∼ iid(±1)
and x∆ ∼ iid(±0.25). Set xNc = 0. Generate
y = Ax.

e) GenerateTin uniformly in T with |Tin| = 0.4|N |.
ComputeT+ andT− as in (6) and setTa1

← T+ \
Tin andTa2

← T− \ Tin.
f) Fix ρ = 0.1. GeneratêµTa1

= xTa1
−ρ andµ̂Ta2

=
xTa2

+ ρ. For anyj ∈ Tin, generatêµTj
∼ xTj

+
0.9ρ× unif(−1, 1). Set µ̂T c = 0.

g) Run CS, modCS and reg-mod-BP to obtainx̂CS ,
x̂modCS and x̂regmodBP .

h) Run weighted ℓ1 reconstruction with different
choices ofγ and store each one tôxwl1.

4) Estimate the probability of exact reconstruction using
CS by counting the number of timeŝxCS was equal to
x (“equal” was defined as‖x̂CS − x‖2/‖x‖2 < 10−5)
and dividing by tot= 100.

5) Do the same for modCS, reg-mod-BP and weightedℓ1
reconstruction for eachγ.

6) Repeat for various values ofn.

We tabulate our results in Table I. We can see that reg-mod-
BP only needs11% measurements for exact reconstruction, but
both modCS and weightedℓ1 need17% measurements and of
course CS needs much more measurements. Hence, reg-mod-
BP can give better exact reconstructions ifµ meets the specific
requirements as in (6).But if we compute the probability of
exact reconstruction using a given small number of measure-
ments, then weightedℓ1 has a higher probability than that of
modCS but lower than that of reg-mod-BP. For example, when
n = 0.14m, the probability of exact reconstruction for modCS
is 0.8 and weightedℓ1 has 0.88 while reg-mod-BP achieves
100% probability of exact reconstruction.

CS modCS wℓ1 RM
n 0.42m 0.17m 0.17m 0.11m

TABLE I
M INIMUM NUMBER OF MEASUREMENTS REQUIRED TO ACHIEVE
EXACT RECONSTRUCTION ALWAYS FORCS,MODCS,WEIGHTED

ℓ1 AND REG-MOD-BP.

(a) n = 0.11m,|∆| = |∆e| = 10%|N |,ρa = 0.1

modCS wℓ1 (0.1) wℓ1 (0.01) RM (0.5ρa) RM (ρa) RM (1.5ρa)
0.4559 0.3984 0.38 0.0734 0.0958 0.1249

(b) n = 0.15m,|∆| = |∆e| = 10%|N |,ρa = 0.1

modCS wℓ1 (0.1) wℓ1 (0.01) RM (0.5ρa) RM (ρa) RM (1.5ρa)
0.1152 0.1365 0.1245 0.0489 0.034 0.0661

TABLE II
RECONSTRUCTION ERROR(N-RMSE) COMPARISON OF MODCS,

WEIGHTED ℓ1 AND REG-MOD-BP. IN BOTH CASES, REG-MOD-BP HAS

MUCH SMALLER ERROR THAN THOSE OF MODCS AND WEIGHTED ℓ1 FOR

DIFFERENT CHOICES OFρ.

B. Reconstruction Error Comparisons

We use the same simulation approach as above but with
steps 3e and 3f replaced byµ = x + unif(−ρa, ρa) where
ρa = 0.1, i.e. the restrictive assumption onµ is removed.
We also fix |∆| = |∆e| = 10%|N | and use different choices
of ρ and γ for reg-mod-BP and weightedℓ1 each to test
their robustness to parameters. Then we compute N-RMSE

(
√

E[‖x̂−x‖2
2]

E[‖x‖2
2]

). The results are summarized in Table II. We
can see that reg-mod-BP has the smallest reconstruction error
for different choices ofρ when the measurementsn = 0.11m
or n = 0.15m.

VI. CONCLUSIONS

We proposed a modification of the modified-CS idea, called
regularized modified Basis Pursuit, for sparse reconstruction
when a part of the support and the signal estimate on it
are known. We obtained the exact reconstruction conditions
for reg-mod-BP and bounded its reconstruction error when
exact reconstruction cannot be achieved. We demonstrated
that reg-mod-BP can have better exact reconstruction than
modCS and weightedℓ1 reconstruction as well as CS when
the signal estimate satisfies the required structure. We then
also showed that reg-mod-BP has the smallest reconstruction
bounds and reconstruction errors and this does not require
the specific type of signal estimate. In summary, reg-mod-BP
significantly improves upon modCS, weightedℓ1 and CS in
terms of reconstruction error bound with fewer measurements.
If a very specific prior information is available so that the prior
constraint is active on part ofT and satisfies (6), then it also
achieves exact reconstruction with fewest measurements.

VII. A PPENDIX

A. Key Lemmas

To obtain Theorem 1, we need the following three lemmas
to complete the proof of Theorem 1.

Lemma 3: The sparse signal,x, is the unique minimizer of
(2) if δ|T |+|∆| < 1 and if we can find a vectorw satisfying
the following condition

1) w′Aj ≥ 0 if j ∈ Ta1
andw′Aj ≤ 0 if j ∈ Ta2

2) w′Aj = 0 if j ∈ Tin

3) w′Aj = sgn(xj) if j ∈ ∆
4) |w′Aj | < 1 if j /∈ T ∪∆

Lemma 4: Given the known part of the support,T , of size
k. Let S, Š be such thatk+S+Š ≤ n andδS+δk+θ2k,S < 1.
Let c be a vector supported on a setTd, that is disjoint with
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T , of size |Td| ≤ S. Then there exists a vector̃w and an
exceptional set,E, disjoint with T ∪ Td, s.t.

Aj
′w̃ = 0, ∀ j ∈ T

Aj
′w̃ = cj , ∀ j ∈ Td (12)

|E| < Š

‖AE
′w̃‖2 ≤ ak(S, Š)‖c‖2

|Aj
′w̃| ≤ ak(S, Š)√

Š
‖c‖2 ∀j /∈ T ∪ Td ∪ E and

‖w̃‖2 ≤ Kk(S)‖c‖2 (13)

whereak(S, Š) is defined in (8) and

Kk(S) :=

√
1 + δS

1− δS − θ2
S,k

1−δk

(14)

Lemma 5: Given the known part of the support,T , of size
k and givenTin ⊆ T , Ta1

⊆ T and Ta2
⊆ T which are as

defined in Theorem 1. Also letk, u, kin and the matrixM be
as defined in Theorem 1. LetS, Š be such thatk+S+ Š ≤ n.
Let c be a vector supported on a setTd, that is disjoint with
T , of size |Td| ≤ S. If δS + δk + θ2k,S < 1 and if

Ta1
⊆ T+ , {i ∈ T : A′

iMATd
(A′

Td
MATd

)−1c > 0},
Ta2

⊆ T− , {i ∈ T : A′
iMATd

(A′
Td
MATd

)−1c < 0} (15)

then, there exists a vector̃w and an exceptional set,E, disjoint
with T ∪ Td, s.t.

Aj
′w̃ = 0, ∀ j ∈ Tin

Aj
′w̃ > 0, ∀ j ∈ Ta1

Aj
′w̃ < 0, ∀ j ∈ Ta2

Aj
′w̃ = cj , ∀ j ∈ Td (16)

|E| < Š

‖AE
′w̃‖2 ≤ akin

(S, Š)‖c‖2

|Aj
′w̃| ≤ akin

(S, Š)√
Š

‖c‖2 ∀j /∈ T ∪ Td ∪ E and

‖w̃‖2 ≤ Kkin
(S)‖c‖2 (17)

whereak(S, Š) is defined in (8) and

Kk(S) :=

√
1 + δS

1− δS − θ2
S,k

1−δk

(18)

The proof of Lemma 3 is given in the next subsection. The
proof of Lemma 4 is in [1] and the proof of Lemma 5 is given
in the long version[13].

B. Proof of Lemma 3
The Lagrange multiplier is

J(β) , ‖βT c‖1+Λ′
1(βT−µT−ρ1)+Λ′

2(−βT+µT−ρ1)+w′(y−Aβ)

whereΛ1 º 0 andΛ2 º 0. Also, we have for anyj ∈ T

λ1,j(βj − µj − ρ) = 0 λ2,j(−βj + µj − ρ) = 0 (19)

Therefore, for this convex problem, the minimizerβ satisfies
the following equality

∇J(β) =





0T
sgn(β∆)
g(T∪∆)c



+

[

(Λ1 − Λ2)
0T c

]

−A′w = 0 (20)

If x is a minimizer of this problem, then we can get
1) For j ∈ T , w′Aj = λ1,j − λ2,j whereλ1,j ≥ 0 and

λ2,j ≥ 0 and they also satisfy

λ1,j(xj − µj − ρ) = 0 λ2,j(−xj + µj − ρ) = 0 (21)

2) For j ∈ ∆, w′Aj = sgn(x∆)
3) For j /∈ T ∪∆, |w′Aj | ≤ 1

Now, we need to prove thatx is the minimizer by showing
that given the conditions of Lemma 3, a unique minimizer
exists which is equal tox. Assume there is another minimizer
β, thus,

‖βT c‖1 ≤ ‖xT c‖1 =
∑

j∈∆

|xj | (22)

Then, we try to prove that‖xT c‖1 ≤ ‖βT c‖1.

‖βT c‖1 =
∑

j∈∆

|xj + (βj − xj)|+
∑

j /∈T∪∆

|βj |

≥
∑

j∈∆

|xj + (βj − xj)|+
∑

j /∈T∪∆

w′Ajβj

≥
∑

j∈∆

sgn(xj)(xj + (βj − xj)) +
∑

j /∈T∪∆

w′Ajβj

=
∑

j∈∆

|xj |+
∑

j∈∆

w′Aj(βj − xj) +
∑

j /∈T∪∆

w′Aj(βj − xj)

+
∑

j∈T

w′Aj(βj − xj)−
∑

j∈T

w′Aj(βj − xj)

= ‖xT c‖1 + w′(Aβ −Ax)−
∑

j∈T

w′Aj(βj − xj)

= ‖xT c‖1 −
∑

j∈T

(λ1,j − λ2,j)(βj − µj + µj − xj) (23)

By (21), we know
∑

j∈T (λ1,j −λ2,j)(µj −xj) = −ρ(λ1,j +
λ2,j). Hence, (23) becomes

‖xT c‖1−
∑

j∈T

(λ1,j−λ2,j)(βj−µj)+
∑

j∈T

ρ(λ1,j+λ2,j) (24)

Since|λ1,j − λ2,j | ≤ λ1,j + λ2,j and |βj − µj | ≤ ρ, we get

−
∑

j∈T

(λ1,j − λ2,j)(βj − µj) +
∑

j∈T

ρ(λ1,j + λ2,j) ≥ 0 (25)

Therefore, we get
‖βT c‖1 ≥ ‖xT c‖1 (26)

This can only happen when‖βT c‖1 = ‖xT c‖1. Consider the
first inequality, since|w′Aj | < 1 for j /∈ T ∪∆, thenβj = 0
for all j /∈ T ∪ ∆. SinceAβ − Ax = 0 and they are both
supported onT ∪ ∆, we knowAT∪∆(βT∪∆ − xT∪∆) = 0.
Sinceδ|T |+|∆| < 1, AT∪∆ has full rank. Therefore,βT∪∆ =
xT∪∆. Finally, we can conclude thatβ = x, thus,x is the
unique minimizer.

Now, by complementary slackness, we knowλ1,j = 0 and
λ2,j = 0 if |xj − µj | 6= ρ. Therefore,w′Aj = 0 for j /∈
(Ta1

∪Ta2
). Whenxj−µj = ρ, λ2,j = 0; whenxj−µj = −ρ,

λ1,j = 0. Define

Ta1
= {j : xj − µj = ρ}, Ta2

= {j : xj − µj = −ρ} (27)

Therefore, we know

w′Aj = λ1,j if j ∈ Ta1
(28)

w′Aj = −λ2,j if j ∈ Ta2
(29)

w′Aj = 0 if j ∈ Tin (30)
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Finally, we can get Lemma 3.

C. Proof Outline of Theorem 1

To prove Theorem 1, apply Lemma 4 iteratively, in a fashion
similar to that of the proof of [[1],Theorem 1]. The main
idea is as follows. At iteration zero, apply Lemma 5 with
Td ≡ ∆ (so that S ≡ u), cj ≡ sgn(xj) ∀ j ∈ ∆ (so
that ‖c‖2 =

√
u), and with Š ≡ u, to get aw1 and an

exceptional setTd,1, disjoint with T ∪ ∆, of size less than
Š = u. Lemma 5 can be applied becauseδu + δk + θ2k,u < 1
(follows from condition 7) and condition 6 holds. At iteration
r > 0, apply Lemma 4 withTd ≡ ∆ ∪ Td,r (so thatS ≡ 2u),
cj ≡ 0 ∀ j ∈ ∆, cj ≡ Aj

′wr ∀ j ∈ Td,r and Š ≡ u to get
wr+1 and an exceptional setTd,r+1. Lemma 4 is applicable
in the above fashion because condition 7 of Theorem 1 holds.
Definew :=

∑∞
r=1(−1)r−1wr .We then argue that if condition

7 of Theorem 1 holds,w satisfies the conditions of Lemma
3. Applying Lemma 3, the result follows. We give the entire
proof in the long version[13].

D. Proof of Lemma 2

Let ∆1 denote the set of indices ofh with the |∆| largest
values outside ofT ∪ ∆ and ∆2 denote the indices of the
next |∆| largest values and so on. We bound the error in3
parts: hT , h∆∪∆1

and h(T∪∆∪∆1)c and we can obtain the
following theorem. First, we bound‖hT ‖2 by using our second
constraint. Sincex and x̂ are both feasible, so

‖hT ‖2 ≤ ‖xT − µT ‖2 + ‖x̂T − µT ‖2 ≤ 2ρ
√
k (31)

Next, we bound‖h(T∪∆∪∆1)c‖2.

‖h(T∪∆∪∆1)c‖2 ≤
∑

j≥2

‖h∆j
‖2 ≤ 1√

u
‖h(T∪∆)c‖1 (32)

Sincex̂ = x+h is the minimizer of (2) and since bothx and
x̂ are feasible,

‖xT c‖1 ≥ ‖(x+ h)T c‖1
≥ ‖x∆‖1 − ‖h∆‖1 + ‖h(T∪∆)c‖1 − ‖x(T∪∆)c‖1(33)

and sincex(T∪∆)c = 0 then

‖h(T∪∆)c‖1 ≤ ‖h∆‖1 (34)

Combining this with (32), and using‖h∆‖1√
u

≤ ‖h∆‖2, we get

‖h(T∪∆∪∆1)c‖2 ≤
∑

j≥2

‖h∆j
‖2 ≤ ‖h∆‖2

Next, since bothx and x̂ are feasible,

Ah = A(x̂− x) = 0 (35)

To upper bound‖h∆∪∆1
‖2, use RIP to get

(1− δ2u)‖h∆∪∆1
‖22 ≤ ‖Ah∆∪∆1

‖22 (36)

To bound the right hand side of the above, notice that
Ah∆∪∆1

= Ah−∑

j≥2 Ah∆j
−AhT and thus

‖Ah∆∪∆1‖22 =< Ah∆∪∆1 , Ah > −
∑

j≥2

< Ah∆∪∆1 , Ah∆j > − < Ah∆∪∆1 , AhT > (37)

Using (35),

| < Ah∆∪∆1
, Ah > | = 0 (38)

Using RIP and (35),

|
∑

j≥2

< Ah∆∪∆1 , Ah∆j > | ≤ |
∑

j≥2

< Ah∆, Ah∆j > |

+|
∑

j≥2

< Ah∆1 , Ah∆j > | ≤
√
2δ2u‖h∆∪∆1‖2‖h∆‖2 (39)

Finally, using RIP and (31),

| < Ah∆∪∆1 , AhT > | ≤ δk+2u‖h∆∪∆1‖2‖hT ‖2 (40)

≤ δk+2u‖h∆∪∆1‖22ρ
√
k (41)

Combining the above5 equations, we get

(1− δ2u)‖h∆∪∆1
‖2 ≤ 2δk+2uρ

√
k +

√
2δ2u‖h∆‖2 (42)

Using ‖h∆‖2 ≤ ‖h∆∪∆1
‖2 and simplifying,

‖h∆∪∆1
‖2 ≤ 2

√
kδk+2u

1− (
√
2 + 1)δ2u

ρ, where

Combining with (35) and (31), we get

‖h‖2 ≤ ‖h∆∪∆1‖2 + ‖h(T∪∆∪∆1)c‖2 + ‖hT ‖2 (43)

≤ 2‖h∆∪∆1‖2 + 2ρ ≤ B1 (44)
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