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Summary. We consider the problem of remote surveillance using infrared (IR)
sensors. The aim is to use IR image sequences to detect moving objects (humans
or vehicles), and to transmit a few ”best view images” of every new object that is
detected. Since the available bandwidth is usually low, if the object chip is big, it
needs to be compressed before being transmitted. Due to low computational power of
computing devices attached to the sensor, the algorithms should be computationally
simple. We present two approaches for object detection - one which specifically solves
the more difficult long range object detection problem and the other for objects at
short range. For objects at short range, we also present techniques for selecting a
single best view object chip and computationally simple techniques for compressing
it to very low bit rates due to the channel bandwidth constraint. A fast image
chip compression scheme implemented in the wavelet domain by combining a non-
iterative zerotree coding method with 2D-DPCM for both low and high frequency
subbands is presented. Comparisons with some existing schemes are also included.
The object detection and compression algorithms has been implemented in C/C++
and their performance has been evaluated the using Hitachi’s SH4 platform with
software simulation.
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1 Introduction

Remote monitoring of activities of stationary or moving vehicles and humans is
a critical component in surveillance applications. The sensors used in practice
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are typically of low quality and the available bandwidth for transmission is
quite limited. We consider the problem of remotely monitoring a battlefield
with IR sensors and present two approaches for object detection. The first
approach is useful when the objects are at large distances, are very small,
appear to move slowly and their signatures have low contrast over background.
In such cases, traditional methods based on the analysis of the difference
between successive frames and/or image and background or image intensity
change will not work. We present a novel algorithm (referred to as the MTI
algorithm) based on variance analysis which is useful at long ranges, when
the object is small and slowly moving. The algorithm uses temporal variance
to detect potential moving spots, spatial variance analysis to suppress false
alarms cause by sensor vibration, and object geometrical constraints to filter
out false alarms caused by tree branches and sensor noise.

In other scenario, when the objects are not so far away, the problem of
moving object detection is formulated as one of segmenting an image function
using a measure of its local singularity as proposed in [1]. When the detected
objects are very small (see Figs. 5.1, 5.2), all views are equally good or bad
and hence the problem of best view selection becomes irrelevant. Also since
the object chip is already very small, compression is not necessary and hence
any chipped image of the object can be transmitted. Thus, in such cases all the
computational power available on the sensor can be used to solve the object
detection problem. When the object chips are larger so that over time the
object pose changes, we choose one best view of the object, compress it using
computationally simple techniques and then transmit the compressed best
view chip. The challenge here is to solve the best view selection problem and
to develop techniques which can compress the image to very low bit rates and
are yet computationally simple since they have to be implemented in real-time
and on hardware with limited computing power. Note that in this work, we
do not study techniques for channel coding since we assume a reliable channel
is available for transmission.

Performance evaluation of algorithms is critical for determining the mem-
ory and computation needs of the algorithm. We present these measures for
the algorithms using the Hitachi’s SH-4 microprocessor.

The rest of the chapter is organized as follows. Section 2 describes the
MTI object detection algorithm for long range, small size object detection
along with results followed by the technique for detecting short range and
larger objects. Section 3 describes techniques for best view selection for large
objects. Section 4 discusses compression techniques for real-time, low power
and very low bit rate compression of object chips. Simulations results on SH4–
7751 microprocessor for performance characterization are presented in Sect.
5 and conclusions in Sect. 6.
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2 Object Detection

We present two object detection algorithms, the first one deals with the more
difficult problem of long range object detection when objects are very small
and the second one for detecting objects at short range.

2.1 Long Range Object Detection (MTI)

Techniques based on optical flow and image intensity analysis may not work
well for long range object detection. In typical scenarios, a moving object size
can be as small as 2×3 pixels and the motion between two adjacent frames can
be less than 0.1 pixels. Several challenging issues need to be addressed. The
first challenge is to compensate for sensor motion using electronic stabilization
methods. Over the years, two dominant approaches have been developed, flow-
based and feature based. The feature-based methods extract point, edge or
line features and solve for an affine transformation between successive frames,
while the flow-based methods compute optical flow and then estimate an affine
model. These methods do not perform well in IR images as feature extraction
in IR images is not reliable and flow estimates for IR images suffer from
severe bias due to noise. Also, these methods are too complex for real-time
computation. Even if stabilization can be solved using one of these approaches,
the problem of separating moving objects from the stabilized background
is challenging due to low signal to clutter ratio in surveillance applications.
Other factors that complicate the problem are changes in the background as
the sensor is panning, false motion detection due to atmospherics and other
confusing motion (motion of tree leaves etc).

We assume a stationary sensor. The proposed algorithm uses a variance
analysis based approach for moving object detection that can effectively inte-
grate the object motion information over both temporal and spatial domains.
Each input frame is first checked for possible errors and then used to update
the temporal variance. When the variance for a pixel increases above a given
threshold, the pixel is labelled as corresponding to a potential moving ob-
ject. All candidate-moving pixels are then grouped to form disjoint moving
objects. The detected potential moving objects (regions) are verified for their
size, shape and orientation to filter out false detection. After false detection
verification, the remaining change regions are reported as moving objects.

The temporal variance at a pixel (i, j) at frame k is computed as

σ2
i,j,k = Si,j,k − µ2

i,j,k (1)
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1
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Si,j,1 = f2
i,j,1 (4)

µi,j,1 = fi,j,1 (5)

fi,j,k is image value at frame k and location (i, j) and L is the temporal window
parameter. A pixel is detected as belonging to potential moving object if the
following conditions are satisfied

σ2
i,j,k ≥ σ2

i,j,k−1 (6)

σ2
i,j,k ≥ T0(i, j) + Th (7)

or

σ2
i,j,k ≥ σ2

i,j,k−1 (8)

σ2
i,j,k ≥ T0(i, j) + Tl (9)

max
−1≤δx≤1,−1≤δy≤1

σ2
i+δx,j+δy,k ≥ T0(i, j) + Th (10)

where

T0(i, j) = max
−2≤δx≤2,−2≤δy≤2

|fi+δx,j+δy,0 − fi,j,0| (11)

σt = vari,j∈N×N (T0(i, j)) (12)
Th = γh × σt (13)
Tl = γl × σt (14)

In our experiments, we set γh = 3.4, γl = 0.8 ∗ γh and L = 16.

2.2 MTI Algorithm Results

Figure 5.1 shows the object detection result for frame 200 and 300 on an
IR sequence (IRseq10) for the case of people walking at far away distance.
Eventhough the width of the objects (people) is 2-3 pixels, the algorithm
correctly detects and tracks them. In this sequence, the sensor was stationary
and its direction was fixed. Figure 5.2 shows the detection of a moving vehicle
for frames 160 and 250. In this case sensor pans and stops and is quickly able
to find the object again. Hence, the algorithm is capable of recovering after
sensor panning motion.

As a comparison with background subtraction techniques, Fig. 5.3 shows
the result using background subtraction based on non-parametric background
modelling [2] on IRseq10. We can see that there are a lot of false detections
whose sizes are same or even greater than the object size. So, the objects can-
not be detected reliably. Also background subtraction techniques need some
number of frames for background modelling before they can start the detection
process. Figure 5.4 shows the ROC curve for the MTI algorithm for different
IR sequences for γh varying from 3.0 to 5.5. The detection percentage is cal-
culated as the ratio of object detections in all frames and the total objects
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Fig. 5.1. Object Detection: Frame 200 and 300 of IRseq10 along with detected
objects

Fig. 5.2. Frame 160 and 250 of a moving vehicle IR sequence along with detected
objects (sensor recovering after panning motion)

actually present in all frames. The false alarms percentage is calculated as the
ratio of the false alarms in all frames and the total objects in all frames. Since
we do not have ground truth, it was generated manually as follows. For all the
sequences considered, the objects are far away and are moving approximately
parallel to the image plane with uniform speed. The objects locations were
hand-picked every thirty frames and are interpolated in between assuming
constant object velocity. Table 1 shows the effect of parameter L on detection
rates and false alarms for different sequences.
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Fig. 5.3. Detection Result using background subtraction on IRseq10
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Fig. 5.4. ROC curve for the MTI algorithm for different IR sequences
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Table 1. Effect of parameter L on Detections and False Alarms for various IR
sequences

Sequence L Detections(%) False Alarms(%)

IRSeq1 8 98.33 13.8
IRSeq1 16 99.83 28.3
IRSeq9 8 97.70 2.24
IRSeq9 16 97.70 0.05
IRSeq2 8 99.80 32.09
IRSeq2 16 99.60 57.33

The MTI algorithm has been implemented on a Dual Pentium 550MHz
personal computer. It can perform moving object detection for 974×436 image
sequences at a sustained rate of twelve frames per second (including reading
data from hard drive and sending image to video display). The algorithm has
been tested on fourteen 974 × 436 × 3600 sequences with objects at various
distance, moving speed, moving direction, and motion patterns, and with
different number of moving objects. From the ROC curves (Fig. 5.4) and
Table 1, we see that the MTI algorithm gives good results (high detection
rate and very low false alarm rate) on almost all of the test sequences with
no running parameters to be adjusted.

2.3 Short Range Object Detection

The problem of object detection is formulated as one of segmenting an im-
age function using a measure of its local singularity as proposed in [1]. The
method combines the problem of stabilization, object detection and tracking
into a single process when interframe motions are restricted to lateral trans-
lations or tilts and scale changes, and has the advantage of exploiting these
sensor motion constraints for performing simultaneous activity detection and
stabilization. The algorithm makes use of the Holder exponent of a hybrid
capacity (derivative of Gaussian along the X and Y axis). Using this measure,
Lipschitz signatures which reflect the singularity of the image function along
each spatial axis are defined. The Lipschitz signatures are used for detection
and tracking of objects. The proposed measure is obtained by applying the op-
erators Gx,σ and Gy,σ to the images which are the derivatives of the Gaussian
applied along x and y axes, respectively. The Lipschitz signatures can then
be defined as the projection of the these measure along the x and y axes. The
main assumption of the algorithm is that the ”active regions” of the image
exhibit some higher level of singularity in the Lipschitz signatures. In other
words, the singularities can be detected and tracked over time. The algorithm
is robust to image scale variations and can handle multiple moving objects. It
also involves projection along spatial axis and hence can be done in real time.
Spatio-temporal information on the objects in the scene can also be inferred.
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3 Best View Selection

As mentioned earlier, the best view selection is not required when the detected
object chip is small in size (few pixels), but becomes important in case object
chip is large and the object pose changes from time to time.

Three different techniques were tried for best view selection. We work on
the assumption that the side view is the ”best view” since it has most of the
identifiable features (See Fig. 5.5). Eigenspace classification has successfully
been used for pose detection [3] and face recognition applications [4][5]. In
the first approach, we formulate the best view selection problem as a pose
matching problem in eigenspace. Another approach to best view selection
would be to wait while the object size keeps increasing (it is approaching
the sensor) and transmit the largest sized image or transmit the last frame
before the object takes a turn. This can done by estimating the Focus of
Expansion (FOE) which can be used to calculate the velocity direction. Since
both techniques mentioned above are computationally intensive, they are not
suitable for real-time hardware implementation. The eigenspace technique also
suffers from the drawback that it is not generalizable, i.e. to use it for a
different type of vehicle it would require a new training phase. It works well
only when similar objects are available in its training database. Hence, the
third approach, a size based detection method was finally implemented. In
what follows, we describe these techniques in detail.

3.1 Eigenspace Classification

This technique is useful for best view selection when there are multiple sensors
capturing an object from different orientations and a database of multiple
views of the object is available. In our experiments we have used multiple
views of tanks taken from different directions. A view closest to the side view
is classified as the best view.

Fig. 5.5. Tank2 (side view)
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Algorithm

Construct an eigenspace using images of tank in various orientations. Place
the camera at forty-five degree spacings around the tanks to obtain eight
possible views of each tank. Obtain the mean image of each of the eight
orientations and save its coordinates in eigenspace. For a query image, classify
it in eigenspace and calculate the distance from each of the orientations using
a distance metric.

Since the required data for doing this was not available, we constructed
an eigen space using all the tank images available and obtained class means
corresponding to front, side and back views. On classification of a query image,
it got mapped to the correct class most of the times.

Eigenspace Construction

Instead of directly obtaining the eigenvectors of an N2×N2 covariance matrix,
the first M (M is the number of training vectors) eigenvectors can be obtained
by first calculating the eigenvectors of an M × M covariance matrix of the
transpose of the image data and then obtaining the image eigenvectors by
taking linear combinations of the training images weighted by the eigenvector
component as described in [4][5][6].

Scale and Intensity Invariance

Since eigenspace classification is sensitive to scale variations, all images were
scaled down to a fixed size before classifying and since the image chip con-
tained the tank only, scaling down the image to a fixed size implied obtaining
the tank image of a fixed size. Both for eigenspace construction and classifi-
cation, the images were normalized by their total energy.

Distance Metrics

The distance metric can either be the simple Euclidean distance(ED) or the
distance along each component normalized by the corresponding eigenvalue
(ND). The latter gives better results since it gives more weight to those di-
rections where the noise variance is lower.

A better solution is to obtain variance along each component in each class
and calculate the distance from a particular class using those eigenvectors
which have low variance in that class but overall high variance in eigenspace.
For scaling the distance from class k, the variance in class k is used rather
than the global eigenvalue for scaling. In this way, the intra-class variance
can be suppressed while the inter-class variance can be emphasized. We call
this measure the Class Normalized Distance (CND). All the three distance
metrics for some sample images are tabulated in Table 2. It can be seen from
the results that the CND is the best metric for classification for the reason
stated above.
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Table 2. Eigenspace Classification Results

Class Class Normalized Euclidean Normalized
Distance(CND) Distance(ED) Distance(ND)

tank2 4 10 24
tank6 15 20 35
tank9 15 19 28
btank12 30 44 56
sftank5 17 21 31

3.2 Focus of Expansion Estimation

The Focus of Expansion is the point in the image sequence of a moving body
from which all the motion vectors appear to diverge. The FOE may not always
lie inside the image boundary. Mathematically, the FOE(Xf ,Yf ) is define as

Xf =
Tx

Tz
(15)

Yf =
Ty

Tz
(16)

where Tx,Ty, Tz are the translational motion vectors. Therefore, assuming the
ground is the X-Z plane, the direction of motion (velocity angle) of the tank
is given by

θ = tan−1 Vx

Vz
= tan−1 Tx

Tz
= tan−1 Xf (17)

A modification of the partial search technique for FOE estimation developed
by Srinivasan in [7] was used. The equations to be solved are

u(x, y) = −(x− xf )h(x, y) + xyωx − (1 + x2)ωy + yωz (18)

v(x, y) = −(y − yf )h(x, y) + (1 + y2)ωx − xyωy − xωx (19)

where u(x, y) and v(x, y) are the optical flow estimates at (x, y), xf , yf are the
x and y coordinates of the FOE in the image(pixel) coordinates, h(x, y) is the
inverse of the depth at point (x, y) and ωx, ωy, ωz are the x, y and z direction
rotations. The FOE estimation algorithm requires calculation of optical flow
which is done using the overlapped basis functions technique developed by
Srinivasan and Chellappa [8]. The FOE in the world coordinates is given by

Xf =
xf + xoffset − (N − 1)/2

f
(20)

which is used for direction of motion calculation in (17).
In the modified partial search FOE estimation technique, we use only the

optical flow estimates of the part of the image containing the moving object
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since the flow estimates of the background are unreliable. Since the size of the
image for which optical flow is available is smaller, the FOE is also searched
over a smaller region. This speeds up the FOE calculation. Also, the FOE
estimate of the previous frame can be used to select an initial offset for the
FOE in the current frame to speed up the FOE calculation over successive
frames. The direction of motion is estimated at regular intervals and we keep
waiting if the tank is approaching towards the camera. The frame at which
the tank takes a turn away from the camera or the tank’s size increases above
a certain threshold could be chosen as the ”best view” in this approach.

3.3 Size based Best View Selection

Since the application requires best view selection and compression to be done
in real-time on hardware with low computing power, we need very simple tech-
niques for best view selection. Thus the final algorithm that was implemented
simply waits till the size of the image chips exceeds a pre-defined threshold.
If the size starts decreasing, it simply chooses the maximum size frame in the
last 90 frames and sends it. Actually a single frame buffer is used to store
the maximum sized chip in the last few frames and as soon as the size starts
decreasing or increases beyond the threshold, the stored frame is compressed
and transmitted. The algorithm rejects chips which are very close to the image
boundary (the tank may not be complete). Spurious frames (produced as a
result of wrong object detection) are also rejected based on thresholding the
height to width ratio.

3.4 Best View Selection Results

In this section, we present the results of best view selection using the three
approaches discussed above.

Eigenspace Classification

An eigenspace of front, side and back views of various tanks is constructed
and the class means for each class are precalculated. In Table 2 results for
distances from the perfect side view (”tank2”) class are shown.

Figure 5.6 shows the mean image of the tank2 class. Distance of a query
tank2 image (side view, see Fig. 5.5) is a minimum. Distance of tank6 (side-
back view) shown in Fig. 5.8 is higher than tank2 but lower than tank12
(back view) shown in Fig. 5.7. Hence tank2 is the ”Best View” in this case.
As can be seen from Table 2, the CND (Class Normalized Distance) has the
maximum variation (4 for perfect side view and 30 for back view) and thus it
is the best metric for classification among the metrics used.

The eigenspace classification is not a very good method for best view
selection because it is sensitive to the lighting conditions, the type of IR sensor
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Fig. 5.6. Mean Image of the tank2 class

Fig. 5.7. Query Image 3: tank12 (Back view)

Fig. 5.8. Query Image 2: tank6 (Back-side view)

used, and to the scale of the image. If the actual sensor is different from the
sensor used in the database, classification could fail. Moreover a very large
database of tank images in various poses is required for a robust eigenspace
construction which may not be feasible.

Focus of Expansion Estimation

The FOE estimation algorithm was run on IR video sequences of the tanks.
Since most of the tanks are moving almost horizontally in front of the camera
in the test sequences, the FOE values are very large (tending to infinity).
The FOE in pixel coordinates for a sample sequence is shown in Table 3. The
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Table 3. FOE Estimates using the optical flow shown in Fig. 5.10

Frame No FOEx FOEy

121 -244 145
123 -369 152
125 -201 140
127 -253 136
129 -553 110
131 -583 110

optical flow estimate for the full Frame 125 is shown in Fig. 5.9. The region of
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Fig. 5.9. Optical Flow Estimate of a typical frame (125) for FOE Estimation

significant motion that is segmented out and used for FOE estimation finally
is shown in Fig. 5.10. The FOE estimation technique is not very suitable for
our application because both optical flow calculation and FOE estimation are
computationally intensive. Also for the IR images, the optical flow estimates
are not very accurate and as a result the FOE estimates are also not accurate
enough.

Size Based Best View Selection

Figure 5.11 shows a best view selected by this approach.
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Fig. 5.10. Segmented Optical Flow Estimate for frame 125 which is finally used in
FOE Estimation (Magnified view)

Fig. 5.11. Size based Best View Selection

4 Compression

For long range objects, since the detected image chip is already very small,
compression is not really necessary. Also since the object chip contrast can
be very low compared to the background, it is preferable to just transmit the
binary image of the object (instead of transmitting a grey scale one) which
itself provides an 8 : 1 compression ratio. If more computational power is
available, the binary image could be compressed by run-length coding else
just the raw bits can be transmitted.

For objects at short range (which are large), the image chip chosen by the
”Best View Selection” algorithm has to be compressed before transmission.
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Since the available channel bandwidth is low, we have tried to develop com-
pression schemes which can provide very high compression ratios while at the
same time maintaining a reasonable image quality. Since the algorithm is to
be implemented in real-time using limited computing hardware, the computa-
tional complexity should be low. We have developed real-time algorithms for
image compression in the wavelet domain. We first provide a background of ex-
isting image compression schemes and discuss the theoretical background for
wavelet transforms and the compression techniques. Following that, we discuss
the compression schemes implemented and compare against other techniques.
We compare our scheme, Combined Zerotree and DPCM Coding against three
existing schemes all of which have low computational complexity, viz. Scalar
Quantization (SQ), Zerotree coding and DPCM coding. The more efficient
compression schemes like JPEG and LZW are not compared here because
they have a much higher computational cost associated with their implemen-
tation. We then provide a performance analysis of the coding schemes. Finally
experimental results are provided followed by computational cost analysis. We
use PSNR (Peak Signal to Noise Ratio) which is a standard metric for image
compression schemes to compare de-compressed image quality.

4.1 Previous Work

A wavelet zerotree coding scheme for compression is presented in [9] but
since it uses Vector Quantization (VQ), it cannot be used for our applica-
tion due to high computational cost. Reference [10] presents an embedded
predictive wavelet image coder. But it uses arithmetic coding which is not
suitable for implementation on a embedded processor such as Hitachi’s SH4.
So we have developed algorithms using the Haar wavelet transform followed by
non-iterative zerotree coding [9] and 2D-DPCM for all subbands. The compu-
tational complexity of these algorithms is only marginally higher than simple
scalar quantization (SQ) of the entire image.

4.2 Wavelet Transform Properties

The wavelet transform is an atomic decomposition that represents a signal in
terms of shifted and dilated versions of a prototype bandpass wavelet function
and shifted versions of a low pass scaling function. In discrete time, the band-
pass wavelet function is a high pass filter at different scales and the scaling
function is a low pass filter. The image is low pass and high pass filtered first
along rows and then along columns to generate LL, LH, HL and HH images
each of which is subsampled by two. This process is repeated on the sub-
sampled LL image. The wavelet transform has the following properties which
make it suitable for compression.

• Multiresolution: The image is decomposed into wavelets at N scales and
only the top few coarsest scales need to be transmitted to obtain a reason-
able image quality. Depending on the available channel bandwidth, more
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finer scale coefficients can be transmitted to improve the reconstructed
image quality.

• Entropy Reduction: The wavelet transform of a real image generates a large
number of small coefficients (which can be set to zero) and a small number
of large coefficients which can be encoded. This property is based on the
fact that a real world image will not have information in all frequencies
at all points in space. At most points except edges, the higher frequency
information is almost zero.

• Clustering and Persistence: The wavelet transform attempts to decorre-
late the image but the decorrelation is not complete (since the filters are
constant, not data dependent). There is a residual dependency between ad-
jacent coefficients at the same scale (clustering) and between coefficients
in adjacent scales but the same spatial location (persistence). Our coding
schemes attempt to remove these correlations in the image.

4.3 A-DPCM for Scaling coefficient(LL) encoding

The scaling coefficients (LL subband) contain the maximum information and
thus more bits are allocated for its encoding. But it is also the most highly
correlated subband and this fact can be exploited to maximize compression.
An Adaptive-DPCM scheme is used for encoding the LL subband. The cur-
rent pixel is predicted based on a linear combination of three causal nearest
neighbors. The predicted value of the pixel, X̂ is obtained as

X̂ = l(Q̄) = w̄.Q̄ =
∑

wkQk (21)

The predictor coefficients w̄ are calculated to minimize the mean squared
prediction error as follows

w̄ = E(Q̄Q̄T )−1E(X.Q̄) (22)

where X is the pixel to be predicted, Qi are the quantities based on which the
pixel would be predicted (in this case the nearest neighbors), and w̄ are the
predictor coefficients. Instead of quantizing the pixel value, the error between
the actual and the predicted value (X− X̂) is quantized, which requires fewer
bits since the error would be much smaller than the original pixel value if the
prediction is good. Calculation of LMSE predictor coefficients can be done
offline on a set of similar images.

4.4 Zerotree Coding

In multiresolution wavelet decomposition, each coefficient Xi, except those in
the LL subband and the three highest subbands, is exactly related to 2 × 2
coefficients of the immediately higher subband. These four children coeffi-
cients correspond to the same orientation and spatial location as the parent
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coefficient Xi. Each of the four children coefficients is in turn related to 2× 2
coefficients in the next higher subband and so on. These coefficients are collec-
tively called the descendants of the parent Xi. All coefficients with magnitude
less than threshold T are called insignificant coefficients and their collection
is known as a zerotree. In order to obtain a real-time implementation [9], the
search for insignificant coefficients is started in the lowest frequency subbands
except baseband and continued in higher frequency subbands. When a coeffi-
cient is decided as insignificant and set to zero, all its descendants are also set
to zero. Thus one need to transmit only the escape code for the zerotree root
vector besides encoding the non-zero coefficients. The zerotree root positions
at each scale can be encoded efficiently using the Run-length Coding(RLC).
The non-zero coefficients can be scalar quantized and transmitted. This type
of simple threshold based zerotree coding, RLC and SQ are computationally
simple algorithms for hardware implementation.

However, it is possible that there are significant descendants even though
their parent is insignificant. These mispredictions are inevitable in a non-
iterative search method but the conditional probability of this happening is
very small as discussed in [9]. The misprediction error can be reduced by pre-
dicting the value of a ”zero” coefficient based on its nearest non-zero neighbors
(causal and non causal) while decoding.

4.5 DPCM on Wavelet Coefficients

The zerotree coding exploits the persistence property of wavelet coefficients.
But there is also a residual correlation in the high frequency subbands es-
pecially the LH and the HL bands with horizontal and vertical neighbor re-
spectively. Hence applying a A-DPCM scheme like that discussed for the LL
subband can give additional compression. Also while obtaining the predic-
tion value for the current pixel we can exploit both clustering and persistence
properties, i.e. obtain a prediction for the current pixel based on its vertical
(for HL) or horizontal neighbor(for LH) and its parent coefficient. Again as in
the case of the LL subband, the predictor coefficients can be calculated offline
for a sequence of similar images using (22). In this case the predictors are the
parent coefficient at the same spatial location and the horizontal or vertical
neighbor. This scheme is motivated by a similar scheme discussed in [10] for
visual images.

4.6 Compression Schemes

Four different schemes for encoding the wavelet coefficients were compared. In
all cases the LL subband was encoded using the A-DPCM scheme discussed
in Sect. 4.3.
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Scalar Quantization

This scheme involves scalar quantization (SQ) of the wavelet coefficients and
DPCM encoding of the LL coefficients. Variable bits are allocated to the
subbands based on their variances as discussed in [9].

Zerotree Coding

Zerotree coding is applied as discussed in Sect. 4.4. This not only gives a
significantly reduced bits per pixel (BPP) value than the SQ (as expected),
but also gives reduced MSE value compared to SQ. The reason is that the
quantization error is higher than the thresholding error for high frequency
subbands which are coarsely quantized.

2D Predictive DPCM on Wavelet Subbands

Only DPCM coding is applied as discussed in Sect. 4.5 with no zerotree coding.
The performance of this scheme is bad because the ”noisy data” close to zero,
cannot be predicted correctly and hence the prediction errors obtained are
sometimes larger than the original pixel value. Hence the MSE is significantly
higher.

Combined Zerotree and DPCM coding

We propose to combine zerotree coding and the DPCM encoding (ZT/DPCM)
of wavelet coefficients to achieve maximal compression. First a simple zerotree
coding is applied to the subbands. This is followed by DPCM coding of the
‘non-zeroed’ coefficients. The value of a ‘zeroed’ neighbor is predicted as fol-
lows. If we predict Cx,y based on Cx−1,y which is ‘zeroed’ and the zeroing
threshold is T , we estimate Cx−1,y as follows

S = Cx−2,y + Cx−1,y−1

Ĉx−1,y =





0 if S = 0
−T if S < 0
+T if S > 0

This is based on the assumption that since the next coefficient is non-zero,the
previous one would be close to the threshold. DPCM combined with zerotree
coding works much better because the noisy coefficients have been set to ‘zero’
and we do not try to predict their value. The prediction model is applicable
only to those subbands for which enough (> 2) bits have been allocated and
the prediction error energy obtained while calculating the predictor coeffi-
cients is less than 25% of the subband energy. For other subbands, SQ is
used.
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4.7 Performance Analysis

The aim of any compression scheme is to minimize the mean squared error
(maximize the PSNR) and the entropy per pixel (entropy rate, ER). In SQ,
each pixel is coded independently and the correlation in the image is not
exploited. So the entropy rate is higher. Entropy rate will be minimized if
each pixel is coded based on all past pixels on which it depends, i.e. (for a 1D
signal)

h(Xn) > h(Xn|Xn−1) > h(Xn|Xn−1, ..., 1) (23)

If we assume a one step Markov model,

h(Xn|Xn−1...1) = h(Xn|Xn−1) (24)

For 2D data (assuming a Markov Random Field model), this translates to
Xn,n depending only on Xn−1,n and Xn,n−1.

The quantization MSE will be minimized for a given bit rate if the mean
square value of the quantity to be quantized is minimum. Hence instead of
quantizing Xn,n, in 2D Predictive DPCM, we predict a value ( ˆXn,n) based
on past values and quantize the difference (Xn,n − ˆXn,n) . ˆXn,n is calculated
as discussed in (21) to minimize E[Xn,n − ˆXn,n]2 and hence the quantization
MSE over all linear estimators. Also for a given quantization step size (fixed
MSE), reduced data variance means reduced entropy.

In zerotree coding, the PSNR is higher than SQ because the zeroing error
is lower than the quantization error for high frequency subbands which are
coarsely quantized. Zeroing also reduces entropy since the number of symbols
to be compressed is reduced. The 2D MRF model with second order depen-
dencies (correlations) fits well for the LL subband but does not fit well for
the wavelet subbands and the prediction fails completely for very small val-
ues (only noise). This is the reason why DPCM on wavelet subbands gives
the worst PSNR values. Combined zerotree and DPCM (ZT/DPCM) gives
best results in terms of PSNR and entropy rate. The noisy coefficients are
zeroed and hence not predicted and thus the quantization error remains low.
Because of LMSE prediction, the entropy is minimum and zerotree coding
further reduces the entropy rate by reducing the number of symbols to be
coded.

4.8 Image Compression Results

Various types of low pass and high pass filters satisfying the prefect recon-
struction property can be used. In our implementation, the Haar transform
is used because of its simplicity and ease of hardware implementation. Using
a longer length filter will not be useful because the low pass filter will tend
to average over a very large area and thus loose the localization property of
wavelet transforms. The Haar wavelet is built using a two tap low pass filter
[1, 1] and a two tap high pass filter [1,−1].
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Figure 5.5 shows the original tank2 image and Fig. 5.12 shows the com-
pressed tank2 images using Combined Zerotree/DPCM coding and Zerotree
coding.Table 4 shows the compression results for two sample IR images and
the Lena image.

Table 4. The bpp, PSNR[10 log10 2552/MSE] and Entropy for three sample images
using Zerotree (ZT), Zerotree & DPCM (ZT/DPCM), Scalar Quantization (SQ) &
only DPCM coding schemes

Image Coder Total PSNR Entropy RLC
BPP (Non-zero) BPP

tank2 ZT/DPCM 0.5628 31.73 0.0920 0.2757
ZT 0.5628 31.61 0.2112 0.2757

tank12 ZT/DPCM 0.5232 31.75 0.0880 0.2649
ZT 0.5232 31.65 0.2045 0.2649

lena ZT/DPCM 0.5066 29.40 0.0851 0.2286
ZT 0.5066 29.30 0.1542 0.2286
SQ 0.7947 13.07 0.3156
DPCM 0.7947 25.34 0.1508

Fig. 5.12. Compressed tank2 by (a) Combined zerotree & DPCM coding (b)
Zerotree coding
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The results have been obtained by allocating a total of 0.5 BPP to various
subbands proportional to the logarithm of their variances. Since for this low
value of BPP, the lowermost subbands get negative bits allocated to them
(which are set to zero), the actual BPP obtained is higher than 0.5.

In Table 4 we have compared the total BPP, PSNR, BPP for RLC coding
and entropy rate for three different images (two from IR sequence and the Lena
image). The entropy rate is the minimum bits/pixel that can be theoretically
achieved for the image. Due to hardware constraints we have not implemented
any form of entropy coding (Arithmetic/Huffman).

As can be seen from the values of RLC BPP, almost half the bits are
used up in encoding the zerotree information. More efficient binary encoding
schemes can be employed to reduce this value and this could considerably
improve the BPP. Also, in most cases the combined zerotree and DPCM
scheme gives the best results both in terms of PSNR values and entropy. In
some cases like the Lena image, the PSNR is higher for simple zerotree coding
but the entropy of the combined scheme is less. Ideally, one would assume that
applying a DPCM encoding would cause a significant reduction in PSNR. This
is definitely true for the LL subband but the reduction for higher frequency
subbands is not so much because of lesser correlation. Another reason is the
uncertainty in predicting the value of a pixel based on a neighboring ”zeroed”
pixel. We are experimenting with better methods to improve the prediction
model for combined zerotree and DPCM encoding.

The BPP without zerotree coding is consistently higher for all the images
and hence the zerotree coding is advantageous even though half the BPP is
used up in RLC coding of the zerotree. Also surprisingly, the PSNR for SQ
is lower than for zerotree coding even when the BPP is higher. The reason
for this is that the quantization error in SQ is higher than the zeroing error
for the high frequency subbands which are coarsely quantized. From Table 4,
we observe that DPCM encoding without zeroing is the worst scheme. This
is because a lot of the coefficients below the zeroing threshold in the high
frequency subband are actually ”noise”. Thus in DPCM we are trying to
predict the value of these ”noise” pixels or use them to predict other pixels
and hence the predictions are very bad thus leading to a higher PSNR. Hence
the DPCM model fails in the absence of zerotree coding, while it provides a
reasonably good model for the image when combined with zerotree coding.

4.9 Computational Complexity: Hardware issues

The entire coding scheme is computationally very simple. The Haar wavelet
transform involves a single addition operation per pixel. Zerotree coding re-
quires one comparison to a threshold (per pixel) and a multiplication by two
(a shift operation) to calculate the descendant position. The DPCM oper-
ation involves three real multiplications and two additions to calculate the
predicted vale and one subtraction to obtain the error. Run-length coding is
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again a counting operation requiring one addition per pixel. Thus the addi-
tional cost over scalar quantizing the entire image is (which is the minimum
one has to do to compress an image) is three multiplications and a few addi-
tions per pixel. For an N2xN2 image with a three level wavelet decomposition,
the additional cost for our scheme is given by

ACHaar = (N2 + N2/4 + N2/16)CA (25)

ACZeroing = (N2 + N2/4 + N2/16)(CC + CS) (26)
ACRLC = N2CA (27)

ACDPCM = N2(3CM + 3CA) (28)
where AC is additional cost. CA is the cost for one addition, CM is the cost
for one multiplication, CC is the cost for one comparison, and CS is cost for
one shift (multiply by two) operation . Since comparison and shift are single
operations, CC = CS = 1. Hence, total additional cost is

AC = (N2 + N2/4 + N2/16)(CA + 2) + N2(3CM + 4CA) (29)

5 Performance Evaluation of Algorithms

We have developed a C/C++ implementation of the object detection and
compression/decompression algorithms. The C/C++ implementation of im-
age compression part of the system currently uses zero-tree coding with SQ
and RLC. Performance evaluation of the C/C++ code was done using the
Hitachi’s SH4–7751 microprocessor. SH4–7751 is a high performance super-
scalar RISC microprocessor designed for embedded applications. Some of the
features of SH4 include 167MHZ clock frequency, upto 360 MIPS capability
and on-chip cache for instruction and data. More information on SH4 can be
found at http://semiconductors.hitachi.com. We evaluated the code perfor-
mance using the Hitachi Embedded Workshop (HEW) which is an SH4 simu-
lator provided by Hitachi. The results were obtained using the Profile utility
of HEW. Note that these results are obtained by directly cross-compiling the
C code using Hitachi’s cross-compiler. Hence, certain features of SH4 archi-
tecture (such as floating point unit) which can enhance real-time performance
are not used. In practice, the performance can be improved by designing the
assembly language code for computationally expensive procedures so as to
take advantage of such features of object microprocessor. The performance
results of the algorithms in terms of code size, run-time memory requirement
and instruction cycles on SH4 are as follows.

5.1 MTI Algorithm

The code size required for the MTI algorithm was 9.8 KB. For an input frame
size of 120× 160 maximum run-time memory required was 1.086 MB. Cycles
required per frame were equal to 8.5M which corresponds to 19.54 frames per
second (30 fps frame rate).
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5.2 Image Chipping Algorithm

Motion Detection and Best View selection

For motion detection using technique described in Sec. 2.3 and best view
selection, the code size required was 16 KB. The run-time memory required
for frame size of 240 × 320 was 2.4MB and the processing frame rate (for
120× 160 frame size) was 4-5 frames per second.

Compression

The compression part of algorithm required a code size of 30.5 KB. For a
typical image chip of size 60×120, run-time memory required was 0.75MB and
cycles on SH4 needed to compress the images was 31.5M which corresponds to
run-time of 0.188 sec. The run-time is calculated as Cycles/Clock frequency.

Decompression

Decompression required a code size of 21.5 KB and for a typical image chip of
size 60×120, run-time memory required was 0.75MB. Note that this memory
requirement will increase with chip size. Table 5 gives the instruction cycles
required for different PSNR values of reconstructed sample tank chip.

Table 5. Cycles and run-time required for decompression of a sample target chip
of size 60× 120 for different PSNR

PSNR(db) Cycles(million) Runtime on SH4(sec)

30.21 20.73 0.120
34.36 21.00 0.125

6 Conclusions

A novel variance analysis based algorithm has been presented for moving ob-
ject detection. The algorithm is especially suitable for detection of long range,
small, slow moving objects. An initial test on several IR sequences has revealed
high detection rates with low false alarms for vehicles at distances of several
kilometers. The algorithm is robust and requires no tuning of parameters
by the operator. For object at short distances, technique based on detecting
and tracking image singularities have been discussed. Also for objects at short
range, methods for best view selection and compression were presented. Three
different approaches to the best view selection problem were compared. The
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approach based on classification in eigenspace is suitable when multiple views
of the same object are available but has limitations when significant scale and
illumination variations are present. The FOE estimation approach would be
a useful method for direction of motion calculation but is computationally
expensive. The size based technique is the fastest and gives reasonable results
and is used in our implementation. A new scheme combining non-iterative ze-
rotree coding with 2-D DPCM for LL and for the high frequency subbands was
presented. This method gives better results than simple scalar quantization
and simple zerotree coding both in terms of BPP and PSNR at a marginally
increased computational cost. The algorithms were implemented in C and
their performance results on SH4 processor were presented.

The image compression results can be further improved by using some
form of entropy coding (since the entropy rate of our scheme is significantly
lower) and by replacing the run length coding method with more efficient
binary coding techniques. Also the zeroing thresholds can be calculated for
the required PSNR values.
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