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My research lies at the intersection of machine learning for high dimensional problems, signal and
information processing and applications in video, big-data analytics and bio-imaging. More specifically,
I have worked on designing and analyzing online algorithms for various high-dimensional structured data
recovery problems and on demonstrating their usefulness in dynamic magnetic resonance imaging (MRI)
and in video analytics. In the last two decades, the sparse recovery problem, or what is now more commonly
referred to as compressive sensing (CS), has been extensively studied, see for example [1, 2, 3, 4, 5, 6] and
later works. More recently various other structured data recovery problems, such as low-rank or low-rank
plus sparse matrix recovery, have also been studied in detail.

Sparse recovery or CS refers to the problem of recovering a sparse signal from a highly reduced set of
its projected measurements. Many medical imaging techniques image cross-sections of human organs non-
invasively by acquiring their linear projections one at a time and then reconstructing the image from these
projections. For example, in magnetic resonance imaging (MRI), one acquires Fourier projections one at a
time, while in Computed Tomography (CT), one acquires the Radon transform coefficients one a time. For
all these applications, the ability to accurately reconstruct using fewer measurements directly translates into
reduced scan times and hence sparse recovery methods have had a huge impact in these areas. Low-rank
matrix recovery (or matrix completion) refers to the problem of recovering a low-rank matrix from a subset
of its entries. A motivating application for low-rank matrix completion is the Netflix problem where the
goal is to recover the movie ratings’ matrix when each user rates only a few movies.

Low-rank plus sparse matrix recovery refers to recovering a sparse matrix and a low-rank matrix from
their sum or from a subset of entries of their sum. As explained in [7], this can equivalently be understood
as a robust principal components’ analysis (PCA) problem. An important application where it occurs is
video layering (separating a video sequence into foreground and background layers). The foreground usu-
ally consists of one or more moving persons or objects and hence is a sparse image. In case of a static
camera video, the background image usually changes only gradually over time and the changes are global
(dense) [7], e.g., moving lake waters or moving trees in a forest. Thus it is well modeled as lying in a low-
dimensional subspace that is fixed or slowly changing. Video layering is a key first step to simplifying many
video analytics and computer vision tasks, e.g., video surveillance (to track moving foreground objects),
background video recovery and subspace tracking in the presence of frequent foreground occlusions, or
low-bandwidth mobile video chats or video conferencing (can transmit only the foreground layer). Besides
video, other applications where robust PCA is needed include detecting anomalous and suspicious behavior
from dynamic social network connectivity patterns, detecting data traffic anomalies in dynamic computer
networks, dynamic MRI based sparse region of interest tracking from dense slowly changing backgrounds
[8], or outlier-robust recommendation system design [7].

In the last several years, in my group, we have developed provably accurate online (recursive) solutions
to two structured data recovery problems: (a) online sparse matrix recovery, and (b) online sparse plus low-
rank matrix recovery and online matrix completion. Problem (a) can also be understood as a problem of
recursive recovery of sparse vector (signal) sequences. Problem (b) can be interpreted either as a problem
of online robust PCA or robust subspace tracking, or as a problem of online sparse recovery in large but
structured (low-dimensional and dense) noise. Online algorithms are needed for real-time applications; and
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even for offline applications, they are faster and need less storage compared to batch techniques. Moreover,
as we will see, online approaches often provide an easy way to use temporal dependencies in the dataset
without greatly increasing the number of unknown parameters to be estimated. We describe below our recent
work on problem (b) first and then on problem (a).

Online Sparse + Low-Rank Matrix Recovery (Online Robust PCA)

Principal Components Analysis (PCA) is a widely used tool for dimension reduction. Given a matrix of
data D, PCA seeks to recover a small number of orthogonal directions that contain most of the variability
of the data. This is typically accomplished by performing a singular value decomposition (SVD) of D and
retaining the left singular vectors corresponding to the largest singular values. A limitation of SVD is that
it is highly sensitive to outliers. “Outlier” is a loosely defined term that refers to any corruption that is not
small compared to the true data vector and that occurs occasionally. As suggested in [9], an outlier can
be nicely modeled as a sparse vector whose nonzero entries can have any magnitude. Robust PCA, which
refers to the problem of PCA in the presence of outliers, has been a well-studied problem for a long time
and many useful heuristics have been proposed for it, e.g., see [10] and references therein. However none of
the practically useful algorithms from older literature come with performance guarantees. In recent works
[7, 11], Candès et. al. and Chandrasekaran et. al. posed robust PCA as a problem of separating a sparse
matrix S and a low-rank matrix L from their sum, Y := L+ S. They introduced the Principal Components
Pursuit (PCP) program and obtained performance guarantees for it under mostly mild assumptions [7], [11].
Later work by Hsu et. al. [12] improved the result of [11]. Since then, there has been much later work on
provably accurate robust PCA solutions but all of it has been for batch methods.

In our work, we consider an online or recursive version of the robust PCA problem where we seek to
separate observed data vectors, yt := `t + st, into low dimensional components, `t, and sparse components,
st, as they arrive, using the previous estimates, rather than re-solving the entire problem at each time t. An
application where this type of problem is useful is in video analysis [10]. Imagine a video sequence that has
a distinct background and foreground. An example might be a surveillance camera where a person walks
across the scene. If the background does not change very much, and the foreground is sparse (both practical
assumptions), then separating the background and foreground can be viewed as a robust PCA problem.
Other applications where robust PCA can be useful include detecting anomalous behavior in dynamic social
networks; or recommendation system design in the presence of outliers and missing data.In most of these
applications, an online solution is desirable.

In our recent work [13, 14, 15, 16, 17, 18], we have introduced a novel online solution called Recursive
Projected CS (ReProCS); obtained a correctness result for it under mild assumptions; and shown that it
significantly outperforms most existing batch as well as recursive robust PCA methods for video layering of
difficult videos. To the best of our knowledge, ReProCS is the first provably accurate algorithm for online
robust PCA. We explain this work below.

[ReProCS for online robust PCA] The Recursive Projected CS (ReProCS) [13, 14, 16] solution uses
two extra, but usually practically valid, assumptions beyond what PCP [7, 11] and other batch methods
need. First, it assumes that an accurate estimate of the subspace of `t is available at the initial time (easy
to obtain using a short sequence of background-only video frames) and second, that its subspace is either
fixed or changes slowly over time (valid assumption for slow changing backgrounds). Like PCP, it also
needs a denseness (non-sparseness) assumption on the left singular vectors of the matrix L. Its key idea is
as follows. At any time t, it first projects the measurement vector, yt, perpendicular to the current estimate
of the subspace of `t. Because of the slow subspace change assumption, this approximately nullifies `t.
Recovering st from these projected measurements then becomes a standard sparse recovery problem in
small noise. The denseness (non-sparseness) assumption on the left singular vectors of L ensures that st
can be recovered accurately from the projected measurements by ell-1 minimization, or any other sparse

2



recovery technique. The recovered st is used to estimate `t = yt − st by subtraction and this is then used to
update the subspace estimate using a modification of standard PCA that we call projection-PCA. Because
of how the sparse recovery is done, ReProCS requires a significantly weaker assumption on how frequently
the support of the sparse vectors needs to change compared with PCP.

[Video Analytics Application] In foreground and background layering experiments with real video se-
quences containing large and slow moving or occasionally static objects (infrequent support change), as
long as a short initial background-only sequence is available, ReProCS significantly outperforms batch ro-
bust PCA approaches, such as PCP and RSL [10], as well as online algorithms such as incremental RSL
[19], and a recently introduced algorithm called GRASTA [20]. The experimental comparisons are available
in [16, 21] and at http://www.ece.iastate.edu/˜hanguo/PracReProCS.html.

[Correctness result for ReProCS] In recent work [17, 18], we have shown that, as long as the ReProCS
algorithm parameters are set appropriately, a good-enough estimate of the subspace of `0 is available, slow
subspace change (quantified in a certain way) holds, the left singular vectors of the matrix L are dense
enough, and there is a certain amount of support change of st at least every so often, then the support of
st can be exactly recovered with high probability. Moreover, the sparse and low-rank matrix columns can
be recovered with bounded and small error; and the subspace recovery error decays to a small value within
a short delay of a subspace change time. To the best of our knowledge, our result [17, 18] is among the
first correctness results for an online (recursive) robust PCA algorithm or equivalently for online sparse plus
low-rank matrix recovery. We first studied ReProCS in [15] and obtained a performance guarantee for it.
However the result was not a correctness result (it depended on intermediate algorithm estimates satisfying
a certain property). The same is true for a later result of Feng et al [22].

Online algorithms are needed for real-time applications; and even for offline applications, they are faster
and need less storage compared to batch techniques. Moreover, online approaches can provide a natural way
to exploit temporal dependencies in the dataset without increasing the problem size (number of unknowns).
In our case, we show that ReProCS uses slow subspace change to allow for significantly more correlated
support sets of the sparse vectors than do the various results for PCP [7, 11, 12]. Our result for ReProCS
allows a constant fraction of nonzeros in any row of S, while the result for PCP from [11, 12] only allows this
fraction to be proportional to 1/r where r is the rank of L. The result for PCP from [7] uses an even stronger
assumption - it requires uniformly randomly selected support sets. Of course this advantage for ReProCS
comes at a cost. It needs a tighter bound on the rank-sparsity product compared to what is needed by the
PCP result from [7]. Also, the slow subspace change model that we assume for obtaining the ReProCS
result can be understood as a piecewise stationary approximation to the nonstationary subspace change at
each time (that occurs in practice).

For obtaining our result, we needed to develop new proof techniques and we expect that these can
potentially be applied to various other problems involving a PCA step where the data and noise are corre-
lated. New techniques were needed because all existing correctness results were only for batch robust PCA
approaches. Moreover, almost all existing work on finite sample PCA assumes that the error between the
measured and true data vectors is uncorrelated with the true data, see, e.g., [23] and references therein. How-
ever, in case of ReProCS, because of how the estimate ˆ̀

t is computed, the error et := ˆ̀
t − `t is correlated

with `t and so our proof could not just combine a result for sparse recovery with a result for standard PCA.
This is also the reason a projection-PCA algorithm was needed in the subspace update step of ReProCS.

[Modified-PCP] A key limitation of ReProCS is that it does not use the fact that the noise seen by its
projected sparse recovery step also has structure; it lies close to a very low-dimensional subspace. The only
way to use this fact is in a piecewise batch fashion (one cannot impose a low-dimensional subspace assump-
tion on a single vector). The resulting solution can be understood as a modification of the PCP program
when partial subspace knowledge is available and hence we call it modified-PCP [24, 25]. Modified-PCP
solves the problem of robust PCA with partial subspace knowledge using an idea inspired by our older work
on modified-CS for sparse recovery with partial support knowledge [26] (explained below). The advantage
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of modified-PCP is that it needs a weaker assumption on the rank-sparsity product compared to both PCP
and ReProCS. However, its disadvantage is similar to that of PCP, it cannot handle correlated support change
as well as ReProCS can.

Online Sparse Matrix Recovery (Recursive Recovery of Sparse Signal Sequences)

The goal of this work was to design and analyze recursive algorithms for causally reconstructing a time
sequence of (approximately) sparse signals from highly undersampled measurements. The signals were
assumed to be sparse in some transform domain referred to as the sparsity basis and their sparsity pat-
terns (support set of the sparsity basis coefficients) could change with time. One key application where
this problem occurs is dynamic MRI for real-time medical applications such as interventional radiology
and MRI-guided surgery, or in functional MRI to track brain activation changes. MRI is a technique for
cross-sectional imaging that sequentially acquires the 2D Fourier projections of the cross-section to be re-
constructed. Since MR data is acquired one Fourier projection at a time, the ability to accurately reconstruct
using fewer measurements directly translates into reduced scan times. Shorter scan times along with on-
line (causal) and fast (recursive) reconstruction can enable real-time imaging of fast changing physiological
phenomena, thus making many interventional MRI applications practically feasible. Cross-sectional im-
ages of the brain, heart, larynx or other human organ images are piecewise smooth, and thus approximately
sparse in the wavelet domain. In a time sequence, their sparsity pattern changes with time, but quite slowly
[27, 28, 29]. This simple idea, which was first used in [27], is the key reason our proposed algorithms can
achieve accurate reconstruction from much fewer measurements. In recent years, the static sparse recovery
or compressive sensing (CS) problem has been thoroughly studied [1, 2, 3, 4, 5, 6]. But most existing al-
gorithms for the dynamic problem, e.g. [30, 31], just use CS solutions to jointly reconstruct the entire time
sequence in one go. This is a batch solution and as a result (a) it is very slow in recovering a long sequence
and (b) its memory requirement increases linearly with the sequence length. The alternative - solving the CS
problem at each time separately (simple-CS) - is online, fast and memory-efficient, but needs many more
measurements (higher scan time).

Moreover, batch solutions such as [30, 31] assume Fourier sparsity along the time axis which may not
always be valid. An alternative class of batch solutions solve the Multiple Measurements’ Vector (MMV)
problem, but this assumes that the sparsity pattern of the signal sequence is constant with time. This as-
sumption is often not valid either.

To the best of our knowledge, our recent work [27, 28, 32, 33] proposed the first solutions for recursively
reconstructing sparse signal sequences using much fewer measurements than those needed for accurate
recovery using simple-CS methods. The computational and storage complexity of our proposed algorithms
is only as much as that of simple-CS, but their reconstruction performance is much better. For example,
in results reported in [33], for reconstructing simulated dynamic MRI sequences, our proposed algorithm
(modified-CS) needed only about 16-19% measurements for accurate recovery while a simple-CS solution
(basis pursuit solved using the L1-Magic software) needed about twice as many measurements for the same
recovery error. Existing MR scanners use the inverse Fourier transform which needs 100% measurements.

Our work described below relies on the following easily verifiable assumptions.

1. The sparsity patterns (support set of the sparse basis vectors) of natural signal/image sequences usually
change “slowly” over time [29, 33].

2. In most cases, the values of the nonzero coefficients also change gradually over time [34].

The first assumption above is a new assumption introduced in our work [27, 28]. It has been empirically
verified both for medical image sequences and for video [32, 33, 35]. The second assumption is commonly
used both for adaptive filtering as well as for various tracking problems.
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When using only assumption 1 above, the above problem can be reformulated as one of sparse re-
construction with partially “known” support. The support estimate from the previous time serves as the
“known” part. We can further improve the proposed algorithm by also using assumption 2.

[LS-CS and KF-CS] The key idea of our first approach (LS-CS-residual or LS-CS) is to solve the `1
minimization problem with the observation replaced by the least squares (LS) observation residual computed
using the “known” part of the support [27, 32]. The LS residual measures a signal that has much fewer large
components compared to the original signal (it is what can be called a “sparse-compressible” signal). As a
result, when fewer measurements are available, the LS-CS reconstruction error is lower than that of simple-
CS methods. By also using fact 2, we can replace the LS residual by the Kalman filtering residual (KF-CS)
[27]. This improves the reconstruction particularly when the number of measurements is too few even for
LS-CS.

[Modified-CS and Regularized modified-CS] Even though LS-CS and KF-CS improved reconstruction
accuracy over simple-CS methods, they could not be used for “exact” reconstruction from fewer noise-free
measurements. This led to our second and more powerful approach - modified-CS [33]. Denote the “known”
part of the support by T . Modified-CS tries to find the signal that is sparsest outside of T while satisfying
the data constraint. If T has small error (few extras and misses), modified-CS can achieve provably exact
reconstruction from very few measurements [33]. By also using slow signal value change, one can design
regularized modified-CS which also constrains the change of the nonzero coefficient values along T [34, 36].
In numerical experiments as well as in experiments with simulated dynamic MR imaging, modified-CS
significantly outperformed existing work at the time [33].

Under the practically valid assumption of slowly changing support, we have also been able to prove
(a) exact reconstruction and (b) error stability over time, using fewer measurements than what simple-CS
methods need. We explain these results next.

[Exact reconstruction] We have obtained exact reconstruction conditions for Modified-CS and have
argued that it achieves exact reconstruction under much weaker sufficient conditions (using much fewer
noise-free measurements) than those needed to provide the same guarantee for simple CS as long as slow
support change holds [33].

[Stability over time] For both LS-CS and modified-CS, for the noisy measurements’ case, we have
shown the following. Under fairly mild assumptions (bounded noise, a large enough nonzero coefficient
magnitude increase rate, and weaker requirements on the number of measurements than what is needed for
obtaining similar error bounds on simple-CS error, both the support recovery errors and the reconstruction
errors, are “stable”, i.e. they remain bounded by time-invariant and small values at all times [32, 37, 38,
39]. Stability is critical for any recursive algorithm since it ensures that the reconstruction error does not
blow up over time. In practice, say in real-time MRI, provably stable and small error would mean that the
reconstructed images seen by the interventional radiologist or surgeon would always a close approximation
of reality.
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