
Detecting Parametric Signals in Noise Having
Exactly Known Pdf/Pmf

Reading:

• Ch. 5 in Kay-II.

• (Part of) Ch. III.B in Poor.
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Detecting Parametric Signals in Noise w

Having Exactly Known Pdf/Pmf pw(w)
(Bayesian Decision-theoretic Approach)

Consider the simple binary signal-detection problem:

H0 : x = µ0(ϕ) + w versus

H1 : x = µ1(ϕ) + w

where

• µ0(ϕ) and µ1(ϕ) are known vector-valued functions of the
nuisance parameter ϕ and

• the noise probability density or mass function (pdf/pmf)
pw(w) is exactly known.

Recall our discussion on handling nuisance parameters on pp.
17–18 of handout # 5. Since we have simple hypotheses, we
need to specify the Bernoulli prior pmf for the two hypotheses,
using prior probabilities

π0, π1 = 1− π0 (the Bernoulli pmf).

Specializing the result in eq. (15) in handout # 5 (where we
have assumed that the hypotheses and ϕ are independent a
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priori, see eq. (14) in handout # 5) to the above scenario, we
obtain the following Bayes’ decision rule:

Λ(x) =

∫
pw

(
x− µ1(ϕ)

) prior pdf of ϕ︷︸︸︷
π(ϕ) dϕ∫

pw

(
x− µ0(ϕ)

)
π(ϕ) dϕ︸ ︷︷ ︸

integrated likelihood ratio

H1

≷
π0 L(1 | 0)
π1 L(0 | 1)

.

(1)

Example. Detection of on-off keying signals with unknown
phase in additive white Gaussian noise (AWGN): Choose
AWGN with Σ = σ2 I and known noise variance σ2, µ0(ϕ) = 0,
and

µ1(ϕ) = s(ϕ) =


s[0, ϕ]
s[1, ϕ]

...
s[N − 1, ϕ]



=


a0 sin(0 · ωc + ϕ)
a1 sin(1 · ωc + ϕ)

...
aN−1 sin((N − 1) · ωc + ϕ)


where a1, a2, . . . , aN is a known amplitude sequence, ωc is
known carrier frequency, and ϕ is an unknown phase angle,
independent of the noise, following π(ϕ) = uniform(0, 2π).
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Now, (1) reduces to

Λ(x) =
p(x |H1)
p(x |H0)

=

∫ 2π

0
1
2π p(x |H1, ϕ) dϕ∫ 2π

0
1
2π p(x |H0, ϕ)︸ ︷︷ ︸

indep. of ϕ

dϕ

=

∫ 2π

0
1
2π exp{− 1

2σ2

∑N−1
n=0 (x[n]− s[n, ϕ])2} dϕ

exp{− 1
2σ2

∑N−1
n=0 (x[n])2}

=
1
2π

∫ 2π

0

exp
{ 1
σ2

[
(
N−1∑
n=0

x[n]s[n, ϕ])− 1
2

N−1∑
n=0

(s[n, ϕ])2
]}

dϕ.

We prefer to choose ωc equal to an integer multiple of 2π/N .
For dense signal sampling (N large) and ωc not close to 0 or
π, we have [see eq. (III.B.67) in Poor]:

N−1∑
n=0

(s[n, ϕ])2 =
N−1∑
n=0

a2
n sin2(n · ωc + ϕ) ≈ 1

2

N−1∑
n=0

a2
n =

N

2
a2

where we have used the identity sin2 x = 1
2 −

1
2 cos 2x and the

following definition:

a2 4
=

1
N
·

N−1∑
n=0

a2
n.
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Thus,

Λ(x) ≈ 1
2π

∫ 2π

0

exp
{ 1
σ2

[
(
N−1∑
n=0

x[n]s[n, ϕ])− 1
4N a2

]}
dϕ

=
exp

(
− 1

4
N a2

σ2

)
2π

·
∫ 2π

0

exp
{ 1
σ2

(
N−1∑
n=0

x[n]s[n, ϕ])
}
dϕ

=
exp

(
− 1

4
N a2

σ2

)
2π

·∫ 2π

0

exp
{ 1
σ2

N−1∑
n=0

x[n] an cos
(
nωc + ϕ− 1

2 π
)}
dϕ

=
exp

(
− 1

4
N a2

σ2

)
2π

·
∫ 2π

0

exp
( 1
σ2

Re
{ N−1∑

n=0

x[n] ane
j (n ωc+ϕ−1

2 π)
})

dϕ

=
exp

(
− 1

4
N a2

σ2

)
2π

·
∫

any 2π interval

exp
( 1
σ2

Re
{
z(x) exp

[
j (ϕ− 1

2 π)
]})

dϕ (2)

EE 527, Detection and Estimation Theory, # 5c 5



where

z(x) =
N−1∑
n=0

x[n] an exp(j nωc).

Clearly, (2) does not depend on ∠z(x) and is, therefore,
a function of z(x) only through its magnitude |z(x)|.
Furthermore, (2) is an increasing function of |z(x)|, implying
that we can simplify our test to

∣∣∣ N−1∑
n=0

x[n] an exp(j nωc)
∣∣∣ H1

≷ a threshold γ ⇐⇒

∣∣∣ N−1∑
n=0

x[n] an exp(−j nωc)︸ ︷︷ ︸
Fourier transform of x[n] an

∣∣∣ H1

≷ a threshold ⇐⇒

{ N−1∑
n=0

x[n] an cos(nωc)︸ ︷︷ ︸
quadrature component

}2

+
{ N−1∑

n=0

x[n] an sin(nωc)︸ ︷︷ ︸
quadrature component

}2

H1

≷ a threshold

in both the Bayesian and Neyman-Pearson scenarios (as usual,
only the choice of the threshold differs between the two
scenarios). In this case, we can evaluate the integral (2)
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exactly, yielding

Λ(x) ≈ exp
(
− 1

4

N a2

σ2

)
· I0

(|z(x)|
σ2

)
where I0(·) denotes the zeroth-order modified Bessel function
of the first kind, which can be defined as follows:

I0(|z|) =
1
2π
·
∫ 2π

0

eRe{zejϕ} dϕ.

[Here, we can easily show that the right-hand side of the above
expression is a function of |z| only (i.e. independent of the
phase ∠z):

1
2π
·
∫ 2π

0

eRe{zejϕ} dϕ

=
1
2π
·
∫ 2π

0

eRe{|z| ej(∠z+ϕ)} dϕ

θ=∠z+ϕ
=

1
2π
·
∫

any 2π interval

eRe{|z| ejθ} dθ︸ ︷︷ ︸
a function of |z| only

=
1
2π
·
∫

any 2π interval

e|z| Re{ejθ} dθ

=
∫ 2π

0

e|z| cos θ dθ
4
= I0(|z|).
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] Therefore, our Bayes’ decision rule simplifies to

|z(x)|
H1

≷ σ2 · I−1
0

(
exp

(
1
4

N a2

σ2

)
· π0 L(1 | 0)
π1 L(0 | 1)

)
︸ ︷︷ ︸

γ

leading to the following receiver structure:

Note: Here, to implement the the maximum-likelihood
detection rule:

|z(x)|
H1

≷ σ2 · I−1
0

(
exp

(
1
4

N a2

σ2

))
︸ ︷︷ ︸

maximum-likelihood rule threshold

we need to know the AWGN noise variance σ2.
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Detecting A Stochastic Signal in AWGN
(Neyman-Pearson Approach)

Some signals have unknown waveform (e.g. speech signals or
NDE defect responses). We may need to use stochastic models
to describe such signals. We start with a simple independent-
signal model, described below.

Estimator-correlator. Consider the following hypothesis test:

H0 : x[n] = w[n], n = 1, 2, . . . , N

H1 : x[n] = s[n] + w[n], n = 1, 2, . . . , N

where

• s[n] are zero-mean independent Gaussian random variables
with known variances σ2

s,n, i.e. s[n] ∼ N (0, σ2
s,n),

• the noise w[n] is AWGN with known variance σ2, i.e. w[n] ∼
N (0, σ2),

• s[n] and w[n] are independent.

Here is an alternative formulation. Consider the following
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family of pdfs:

p(x |Cs) = N (0, Cs + σ2 I)

=
1√∏N

n=1[2π (σ2 + cs,n)]
· exp

[
−

N∑
n=1

(x[n])2

2 (σ2 + cs,n)

]
Cs = diag{cs,1, cs,2, . . . , cs,N}

with

x =


x[1]
x[2]

...
x[N ]


and the following (equivalent) hypotheses:

H0 : Cs = 0 (signal absent) versus

H1 : Cs = diag{σ2
s,1, σ

2
s,2, . . . , σ

2
s,N} (signal present).

Clearly, we have integrated s[n], n = 1, 2, . . . , N out to obtain
the marginal likelihood p(x |Σs) under H1.

Here, the only discrimination between the two hypotheses is
in variance of the measurements (i.e. power of the received
signal). The Neyman-Pearson detector computes the likelihood
ratio:

Λ(x) =
p(x | diag{σ2

s,1, σ
2
s,2, . . . , σ

2
s,N})

p(x | 0)
.
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Note that
1
σ2
− 1
σ2 + σ2

s,n

=
1
σ2
·

σ2
s,n

σ2 + σ2
s,n︸ ︷︷ ︸

4
= κn

where we define

κn
4
=

σ2
s,n

σ2 + σ2
s,n

.

Let us compute the log likelihood ratio:

log Λ(x) = const︸ ︷︷ ︸
not a function of x

−
N∑

n=1

(x[n])2

2 (σ2 + σ2
s,n)

+
N∑

n=1

(x[n])2

2σ2

= const︸ ︷︷ ︸
not a function of x

+
2
σ2
·

N∑
n=1

κn · (x[n])2

and, therefore, our test simplifies to (after ignoring the constant
terms and scaling the log likelihood ratio by the positive
constant σ2/2):

T (x) =
N∑

n=1

κn · (x[n])2
H1

≷ γ (a threshold).

We first provide two interpretations of this detector and then
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generalize it to the case of correlated signal s[n] having known
covariance.

Filter-squarer interpretation:

N∑
n=1

κn · (x[n])2 =
N∑

n=1

(
√
κn · x[n])2.
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Estimator-correlator interpretation:

N∑
n=1

κn · (x[n])2 =
N∑

n=1

x[n] · (κn x[n])

=
N∑

n=1

x[n] ·
σ2

s,n

σ2 + σ2
s,n

x[n]︸ ︷︷ ︸
E [s[n] | y[n]]=bsMMSE[n]

.
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(Asymptotic) Estimator-correlator: Wide-sense Stationary
(WSS) signal s[n] in WSS noise w[n]. Suppose that s[n]
and w[n] are zero-mean WSS sequences with power spectral
densities (PSDs)

Pss(f) and Pww(f), f ∈ [−1
2,

1
2].

Then, our estimator-correlator structure remains the same, with
the estimator block modified accordingly:

which is an asymptotic estimator-correlator.
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Estimator-correlator for Correlated Signal in
the Form of a Linear Model

We extend the estimator-correlator to the case of correlated
signal:

H0 : x = w versus

H1 : x = Hθ︸︷︷︸
signal s

+w

where

• H is a known N × p matrix and N ≥ p.

• the noise w is zero-mean Gaussian with known covariance
matrix Σw:

p(w) = N (0,Σw).

• θ is unknown, with the following prior pdf:

π(θ) = N (0,Σθ)

where Σθ is known.

We focus on the following general family of pdfs:

p(x |Cs) = N (0, Cs + Σw)
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where Cs is a positive-definite covariance matrix. Then, the
above hypothesis-testing problem can be equivalently stated as

H0 : Cs = 0 (signal absent) versus

H1 : Cs = HΣθH
T (signal present).

The estimator-correlator test statistic is now

T (x) = 1
2 xT Σ−1

w x− 1
2 xT (HΣθH

T + Σw)−1 x

Recall the matrix inversion lemma:

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1

and use it as follows:

(Σw +HΣθH
T )−1 = Σ−1

w

−Σ−1
w H(Σ−1

θ +HTΣ−1
w H)−1HTΣ−1

w

yielding

T (x) = 1
2 · x

TΣ−1
w H (Σ−1

θ +HTΣ−1
w H)−1HTΣ−1

w x︸ ︷︷ ︸
E [θ |x]

4
=

bθMMSE, see handout # 4

. (3)
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Example: Detecting a Sinusoid in a Rayleigh-fading
Channel (Neyman-Pearson Approach)

Over a short time interval, the channel output is a constant-
amplitude sinusoid with random amplitude and phase, i.e.

s[n] = A cos(2πf0n+ ϕ) = a cos(2πf0n) + b sin(2πf0n)

for n = 0, 1, . . . , N − 1. Let us choose independent, identically
distributed (i.i.d.) Rayleigh fading:

θ =
[
a
b

]
∼ N (0, σ2

θ I︸︷︷︸
Σθ

)

implying

A =
√
a2 + b2 ∼ a Rayleigh random variable

ϕ ∼ uniform(0, 2π).

With these assumptions, s[n] is a WSS Gaussian random
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process, since

E (s[n]) = 0

E (s[n]s[n+ k]) = E {[a cos 2πf0n+ b sin 2πf0n]

·[a cos 2πf0(n+ k) + b sin 2πf0(n+ k)]}
= σ2

θ · [cos 2πf0n cos 2πf0(n+ k)

+ sin 2πf0n sin 2πf0(n+ k)]

= σ2
θ ·

{exp(j2πf0n) + exp(−j2πf0n)
2

·exp(j2πf0(n+ k)) + exp(−j2πf0(n+ k))
2

+
exp(j2πf0n)− exp(−j2πf0n)

2j

·exp(j2πf0(n+ k))− exp(−j2πf0(n+ k))
2j

}
= σ2

θ cos 2πf0k = rss[k]

for n = 0, 1, . . . , N − 1. We now construct a linear model with

H =


1 0

cos 2πf0 sin 2πf0
... ...

cos 2πf0(N − 1) sin 2πf0(N − 1)
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and
Σw = σ2 I (AWGN).

Note that σ2 and σ2
θ are assumed known. Now, (3) reduces to

T (x) = 1
2 · x

TΣ−1
w H(Σ−1

θ +HTΣ−1
w H)−1HTΣ−1

w x

=
1

2 (σ2)2
· xT H (σ−2

θ I + σ−2HTH)−1HTx

For large N and f0 not too close to 0 or 1
2,

HTH ≈ (N/2) I

see p. 157 in Kay-II. Furthermore,

HTx =

[ ∑N−1
n=0 x[n] cos 2πf0n∑N−1
n=0 x[n] sin 2πf0n

]
.

After scaling by the positive constant 2 (σ2)2/(σ−2
θ +σ−2N/2),

our test statistic T (x) simplifies to

T ′(x) =
1
N

∣∣∣ N−1∑
n=0

x[n] exp(−j2πf0n)
∣∣∣2

which is nothing but the periodogram of x[n], n = 1, 2, . . . , N
evaluated at frequency f = f0, also known as the quadrature
or noncoherent matched filter.
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Performance Analysis for the Neyman-Pearson Setup:
Define

ξ =
[
ξ1
ξ2

]
= HTx.

Under H0, we have only noise, implying that

ξ ∼ N (0,HT σ2 I H ≈ Nσ2

2︸︷︷︸
4
= s2

0

I).

Under H1, we have

ξ ∼ N
(
0,HT (H Σθ︸︷︷︸

σ2
θ

I

HT + σ2I)H
)
.

We approximate the covariance matrix of ξ underH1 as follows:

HT (HΣθH
T + σ2I)H ≈ σ2

θ (N/2)2 I + σ2 (N/2) I

=
N

2

(N
2
σ2

θ + σ2
)

︸ ︷︷ ︸
4
= s2

1

I.
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Now, under H0,

T ′(x) =
1
N

(ξ21 + ξ22) =
s20
N

[(
standard
normal
random
variable︷︸︸︷
ξ1
s0

)2

+
(ξ2
s0

)2]
︸ ︷︷ ︸

χ2
2 under H0

implying that

PFA = P [T ′(X) > γ |Cs = 0]

=

Q
χ2
2

(
N γ

s20

)
︷ ︸︸ ︷
P

[N T ′(X)
s20︸ ︷︷ ︸
χ2

2

>
N γ

s20

∣∣∣Cs = 0
]

= exp(−1
2N γ/s20)

see eq. (2.10) in Kay-II. Similarly, under H1,

PD = P [T ′(X) > γ |Cs = σ2
θ HH

T ]

= P
[NT ′(X)

s21
>
Nγ

s21

∣∣∣Cs = σ2
θ HH

T
]

= exp(−1
2N γ/s21).
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But
−1

2N γ = s20 logPFA

leading to

PD = exp
(s20
s21

logPFA

)
= PFA

s2
0/s2

1.

Recall the expressions for s20 and s21 and compute their ratio:

s21
s20

=
N
2 (N

2 σ
2
θ + σ2)

Nσ2

2

=
N

2
σ2

θ

σ2
+ 1 =

η

2
+ 1

where

η =
Nσ2

θ

σ2
=
NE [

a2+b2︷︸︸︷
A2 /2]
σ2

≡ average SNR.

Hence
PD = PFA

1
1+η/2.

PD increases slowly with the average signal-to-noise ratio (SNR)
η (see Figure 5.7 in Kay-II) because Rayleigh fading causes
amplitude to be small with high probability.

Coherent channel ⇒ matched filter.

Noncoherent channel ⇒ quadrature matched filter.

Compare Figures 5.7 and 4.5 in Kay-II.
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Noncoherent FSK in a Rayleigh-fading Channel
(Bayesian decision-theoretic detection for 0-1 loss)

H0 : x[n] = A cos(2πf0n+ ϕ) + w[n], n = 0, 1, . . . , N − 1

H1 : x[n] = A cos(2πf1n+ ϕ) + w[n], n = 0, 1, . . . , N − 1

where, as before, A and ϕ are random phase and amplitude
and

w =


w[0]
w[1]

...
w[N − 1]

 ∼ N (0,Σw).

We now focus on the following family of pdfs:

p(x |H) = N (0,H ΣθH
T + Σw)

where Σθ is known. We can rewrite the above detection
problem using the linear model as follows:

H0 : H = H0 versus

H1 : H = H1
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where x =


x[1]
x[2]

...
x[N ]

,

H0 =


1 0

cos 2πf0 sin 2πf0
... ...

cos 2πf0(N − 1) sin 2πf0(N − 1)


and

H1 =


1 0

cos 2πf1 sin 2πf1
... ...

cos 2πf1(N − 1) sin 2πf1(N − 1)

 .

For a priori equiprobable hypotheses

π(H = H0) = π(H = H1) = 1
2

we have the maximum-likelihood test:

p(x |H = H1)
p(x |H = H0)

H1

≷ 1
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i.e.

1

|H1ΣθHT
1 +Σw|1/2

exp
ˆ
1
2 xT Σ−1

w x − 1
2 xT (H1ΣθHT

1 + Σw)−1 x
˜

1

|H0ΣθHT
0 +Σw|1/2

exp
ˆ
1
2 xT Σ−1

w x − 1
2 xT (H0ΣθHT

0 + Σw)−1 x
˜ H1

≷ 1

which can be written as

1

|H1ΣθHT
1 +Σw|1/2

exp
ˆ
1
2 · xT Σ−1

w H1(Σ
−1
θ

+ HT
1 Σ−1

w H1)
−1HT

1 Σ−1
w x

˜
1

|H0ΣθHT
0 +Σw|1/2

exp
ˆ
1
2 · xT Σ−1

w H0(Σ
−1
θ

+ HT
0 Σ−1

w H0)−1HT
0 Σ−1

w x
˜ H1

≷ 1.

To further simplify the above test, we adopt additional
assumptions. In particular, we assume i.i.d. Rayleigh fading:

Σθ = σ2
θ I

and AWGN

Σw = σ2 I (AWGN).

where σ2 and σ2
θ are known. For large N and fi, i ∈ {0, 1} not

too close to 0 or 1
2,

HT
i Hi ≈ (N/2) I

see p. 157 in Kay-II. Now, we apply this approximation and the
identities |PQ| = |P | · |Q| and |I +AB| = |I +BA| to further
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simplify the above determinant expressions:

|HiΣθH
T
i + Σw| = |σ2

θ H0H
T
0 + σ2 I|

= |σ2 I| · |I +
σ2

θ

σ2
H0H

T
0 |

≈ (σ2)N ·
∣∣∣I2 +

σ2
s

σ2

N

2
I2

∣∣∣
for i ∈ {0, 1}. Applying the above approximation and
assumptions yields the simplified maximum-likelihood test:

exp
[

1
2 σ4 · xTH1 (σ2

θ I + N
2 σ2 I)−1HT

1 x
]

exp
[

1
2 σ4 · xTH0 (σ2

θ I + N
2 σ2 I)−1HT

0 x
] H1

≷ 1.

and, equivalently,

xTH1H
T
1 x− xTH0H

T
0 x

H1

≷ 0

or

1
N

∣∣∣ N−1∑
n=0

x[n] exp(−j2πf1n)
∣∣∣2 H1

≷
1
N

∣∣∣ N−1∑
n=0

x[n] exp(−j2πf0n)
∣∣∣2.

For performance analysis of this detector (i.e. computing an
approximate expression for the average error probability), see
Example 5.6 in Kay-II.
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Preliminaries

Let us define a matrix-variate circularly symmetric complex
Gaussian pdf of an p × q random matrix Z with mean M (of
size p × q) and positive-definite covariance matrices S and Σ
(of dimensions p× p and q × q, respectively) as follows:

Np×q(Z |M,S,Σ ) =
1

πpq |S|q |Σ |p

· exp
{
− tr[Σ−1(Z −M)HS−1(Z −M)]

}
∝ exp

{
− tr[Σ−1(Z −M)HS−1(Z −M)]

}
∝ exp

[
− tr(Σ−1ZHS−1Z) + tr(Σ−1ZHS−1M)

+ tr(Σ−1MHS−1Z)
]

where “H” denotes the Hermitian (conjugate) transpose.
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Noncoherent Detection of Space-time Codes in
a Rayleigh Fading Channel

Consider the multiple-input multiple-output (MIMO) flat-fading
channel where the nR× 1 vector signal received by the receiver
array at time t is modeled as

x(t) = Hφ(t) + w(t), t = 1, . . . , N

where H is the nR × nT channel-response matrix, φ(t) is
the nT × 1 vector of symbols transmitted by nT transmitter
antennas and received by the receiver array at time t, and w(t)
is additive noise. Note that we can write the above model as

[x(1) · · ·x(N)]︸ ︷︷ ︸
X

= H [φ(1) · · ·φ(N)]︸ ︷︷ ︸
Φ

+ [w(1) · · ·w(N)]︸ ︷︷ ︸
W

(4)

Here, Φ is a space-time code (multivariate “symbol”) belonging
to an M -ary constellation:

Φ ∈ {Φ0,Φ1, . . . ,ΦM−1}.
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We adopt a priori equiprobable hypotheses:1

π(Φ) =
1
M
· i{Φ0,Φ1,...,ΦM−1}(Φ)

and assume that w(t), t = 1, 2, . . . , N are zero-mean i.i.d. with
known covariance

cov(w(t)) = σ2 InR
.

Now, the likelihood function for the measurement model (4) is

p(X |Φ,H) = NnR×N(X |HΦ, σ2 I, I)

=
1

πnRN |σ2I|N
· exp

{
− 1
σ2

tr[(X −HΦ)H(X −HΦ)]
}
.

We assume that Φ and H are independent a priori, i.e.

π(Φ,H) = π(Φ)π(H)

where π(Φ) is given in (5) and π(H) is chosen according to
1Here, iA(x) denotes the indicator function:

iA(x) =


1, x ∈ A,
0, otherwise

.
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the following separable Rayleigh-fading model:

π(H) = NnR×nT
(H | 0, I,

transmitter fading corr. matrix︷︸︸︷
∆h )

=
1

πnRnT |∆h|nR
· exp

[
− tr(∆−1

h HHH)
]
.

Now

p(Φ,H |X) ∝ p(X |Φ,H)π(Φ)π(H)

∝ exp
[ 1
σ2

tr(ΦHHHX) +
1
σ2

tr(XHHΦ)

− 1
σ2

tr(ΦHHHHΦ)
]
· i{Φ0,Φ1,...,ΦM−1}(Φ)

· exp
[
− tr(∆−1

h HHH)
]

∝ exp
{ 1
σ2

tr(ΦHHHX) +
1
σ2

tr(XHHΦ)

− tr
[ ( 1
σ2

Φ ΦH + ∆−1
h

)
︸ ︷︷ ︸

CH(Φ)−1

HHH
]}
· i{Φ0,Φ1,...,ΦM−1}(Φ)
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implying that

p(H |Φ, X)

∝ exp
{ 1
σ2

tr(ΦHHHX) +
1
σ2

tr(XHHΦ)

− tr
[( 1
σ2

Φ ΦH + ∆−1
h

)
HHH

]}
∝ exp

[
− tr

{
CH(Φ)−1HH H

}
+ tr

{
CH(Φ)−1 Ĥ(Φ)H H

}
+tr

{
CH(Φ)−1HH Ĥ(Φ)

}]
= NnR×nT

(
H | 1

σ2
X ΦH (

1
σ2

Φ ΦH + ∆−1
h )−1︸ ︷︷ ︸

4
= bH(Φ)

, I,

( 1
σ2

Φ ΦH + ∆−1
h

)−1︸ ︷︷ ︸
4
= CH(Φ)

)

=
1

πnRnT |CH(Φ)|nR

· exp
(
− tr

{
CH(Φ)−1 [H − Ĥ(Φ)]H [H − Ĥ(Φ)]

})
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where we have defined

Ĥ(Φ)
4
=

1
σ2
X ΦH CH(Φ)

CH(Φ)
4
=

( 1
σ2

Φ ΦH + ∆−1
h

)−1

Note the following useful facts:

tr[CH(Φ)−1HHĤ(Φ)] =
1
σ2

tr[CH(Φ)−1HHX ΦH CH(Φ)]

=
1
σ2

tr(HHX ΦH)

tr[CH(Φ)−1Ĥ(Φ)HH] =
1
σ2

tr[CH(Φ)−1CH(Φ)ΦXHH]

=
1
σ2

tr(ΦXHH).

To obtain the marginal posterior pmf of Φ, we apply our
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“notorious” trick:

p(Φ |X) =
p(Φ,H |X)
p(H |Φ, X)

∝︸︷︷︸
keep track of the terms
containing Φ and H

exp
[ 1
σ2

tr(ΦHHHX) +
1
σ2

tr(XHHΦ)− tr(CH(Φ)−1HHH)
]

·i{Φ0,Φ1,...,ΦM−1}(Φ) · |CH(Φ)|nR

· exp
{

tr
[
CH(Φ)−1 (H − Ĥ(Φ))H (H − Ĥ(Φ))

]}
∝ i{Φ0,Φ1,...,ΦM−1}(Φ)

·|CH(Φ)|nR · exp{tr[CH(Φ)−1Ĥ(Φ)HĤ(Φ)]}
= i{Φ0,Φ1,...,ΦM−1}(Φ) · |CH(Φ)|nR

· exp
{ 1

(σ2)2
tr[CH(Φ)−1CH(Φ)ΦXH X ΦH CH(Φ)]

}
= i{Φ0,Φ1,...,ΦM−1}(Φ) · |CH(Φ)|nR

· exp
{ 1

(σ2)2
tr[ΦXH X ΦH CH(Φ)]

}
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and the maximum-likelihood test becomes:

X ?
m =

{
x : m = arg max

l∈{0,1,...,M−1}

(
|CH(Φl)|nR

· exp
( 1
(σ2)2

tr[ΦlX
H X ΦH

l CH(Φl)]
))}

.

Unitary space-time codes and i.i.d. fading: Suppose that
ΦmΦH

m = InT
for all m and the fading is i.i.d., i.e.

∆h = ψ2
h InT

.

Then, the above maximum-likelihood test greatly simplifies:

X ?
m =

{
x : m = arg max

l∈{0,1,...,M−1}
tr[ΦlX

H X ΦH
l ]

}
which is the detector proposed in

B.M. Hochwald and T.L. Marzetta, IEEE Trans. Inform.
Theory, vol. 46, pp. 543–564, March 2000.
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