
Coherent Detection

Reading:

• Ch. 4 in Kay-II.

• (Part of) Ch. III.B in Poor.
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Coherent Detection (of A Known Deterministic
Signal) in Independent, Identically Distributed
(I.I.D.) Noise whose Pdf/Pmf is Exactly Known

H0 : x[n] = w[n], n = 1, 2, . . . , N versus

H1 : x[n] = s[n] + w[n], n = 1, 2, . . . , N

where

• s[n] is a known deterministic signal and

• w[n] is i.i.d. noise with exactly known probability density or
mass function (pdf/pmf).

The scenario where the signal s[n], n = 1, 2, . . . , N is exactly
known to the designer is sometimes referred to as the coherent-
detection scenario.

The likelihood ratio for this problem is

Λ(x) =
∏N

n=1 pw(x[n]− s[n])∏N
n=1 pw(x[n])
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and its logarithm is

log Λ(x) =
N−1∑
n=0

log
[pw(x[n]− s[n])

pw(x[n])

]
which needs to be compared with a threshold γ (say). Here is
a schematic of our coherent detector:
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Example: Coherent Detection in AWGN
(Ch. 4 in Kay-II)

If the noise w[n] i.i.d.∼ N (0, σ2) (i.e. additive white Gaussian
noise, AWGN) and noise variance σ2 is known, the likelihood-
ratio test reduces to (upon taking log and scaling by σ2):

σ2 log Λ(x) =
N∑

n=1

(x[n]s[n]−s2[n]/2)
H1

≷ γ (a threshold) (1)

and is known as the correlator detector or simply correlator.
This name is due to the fact that, in the Neyman-Pearson
setting, we could absorb the s2[n] terms into the threshold,
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leading to the test statistic proportional to the sample
correlation between x[n] and s[n]:

T (x) =
N∑

n=1

x[n] s[n]. (2)

We decide H1 if T (x) > γ (the “new” threshold, after
absorbing the s2[n] terms).

This structure is also known as the matched-filter receiver, due
to the fact that it operates by comparing the output of a linear,
time-invariant (LTI) system (filter) to a threshold. Indeed, we
can write (2) as

T (x) =
N∑

n=1

x[n] s[n] =
∞∑

n=−∞
x[n]h[N − n] = {x ? h}[N ]

where {x ? h}[n] denotes convolution of sequences {x[n]} and
{h[n]} and, in this case,

h[n] =
{

s[N − n], 0 ≤ n ≤ N − 1
0, otherwise

.

Therefore, this system

• inputs the observation sequence x[1], x[2], . . . , x[N ] to a
digital finite impulse response LTI filter
and then
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• samples the output

y[n] = {x ? h}[n]

at time n = N for comparison with a threshold.

We can express the filter output y[n] in the Fourier domain as
follows:

y[n] =
∫ 1/2

−1/2

H(f) X(f) exp(j 2πfn) df

=
∫ 1/2

−1/2

[S(f)]∗X(f) exp[j 2πf(n−N)] df

where

H(f) = Fourier transform{s[N − n]}

=
N−1∑
n=0

s[N − n] exp(−j2πfn)

k=N−n=
N∑

k=1

s[k] exp[−j2πf(N − k)]

= exp(−j2πfN) · [S(f)]∗, f ∈ [−1
2,

1
2].

EE 527, Detection and Estimation Theory, # 5b 6



Finally, sampling the filter output at n = N yields

T (x) = y[N ] =
∫ 1/2

−1/2

[S(f)]∗X(f) df

which is not surprising (recall the Parseval’s theorem).
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Example: Coherent Detection in I.I.D.
Laplacian Noise

The Laplacian-noise model is sometimes used to represent the
behavior of impulsive noise in communication receivers.

If the noise w[n] i.i.d.∼ Laplacian:

p(w[n]) =
1√
2 σ2

· exp
(
−
√

2
σ2
· |w[n]|

)
, n = 1, 2, . . . , N

and σ2 is known, then the log likelihood is

log Λ(x) =
N∑

n=1

log
[pw(x[n]− s[n])

pw(x[n])

]

=

√
2
σ2
·

N∑
n=1

(−|x[n]− s[n]|+ |x[n]|).

Now, our coherent detector can be written as

N∑
n=1

(−|x[n]− s[n]|+ |x[n]|)
H1

≷ γ

Interestingly, applying the maximum-likelihood test (i.e. the
Bayes’ decision rule for a 0-1 loss and a priori equiprobable
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hypotheses) corresponds to setting γ = 0, implying that the
maximum-likelihood detector does not require the knowledge
of the noise parameter σ2 to declare its decision. Again, the
knowledge of σ2 is key to assessing the detection performance.

An intuitive detector follows by defining

y[n] = x[n]− 1
2 s[n].

Then

E {y[n] |H0} = −1
2 s[n]

E {y[n] |H1} = 1
2 s[n]

}
(symmetrized version)

and

N∑
n=1

(−|x[n]− s[n]|+ |x[n]|)
H1

≷ γ

⇐⇒
N∑

n=1

(
− |y[n]− 1

2 s[n]|+ |y[n] + 1
2 s[n]|

) H1

≷ γ

depicted as follows:
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see also pp. 49–50 in Poor.

It is of interest to contrast the correlator detector on p.
4 (optimal for AWGN) with the optimal detector for i.i.d.
Laplacian noise:

• Both systems center the observations by subtracting s[n]/2
from each x[n].

• The correlator detector on p. 4 then

− correlates the centered data with the known signal s[n]
and

− compares the correlator output with a threshold γ.

• Alternatively, upon centering the observations, the optimal
detector for Laplacian noise

− soft-limits the centered data,
− correlates these soft-limited centered observations with

the sequence of signal signs sgn(s[n[), and
− compares the correlator output with a threshold γ.
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Soft-limiting in the optimal detector for Laplacian noise reduces
the effect of large observations on the correlator sum and,
therefore, makes the system robust to large noise values (which
will occur frequently due to the heavy tails of the Laplacian
pdf).
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Coherent Detection in Gaussian Noise With
Known Covariance

(Generalized Matched Filters, Ch. 4 in Kay-II)

Assume that we have observed x =


x[1]
x[2]

...
x[N ]

, which, given

the parameter vector µ, is distributed as N (µ,Σ ), where Σ is
a known positive definite covariance matrix:

p(x |µ) = N (µ,Σ ). (3)

Consider the following simple hypothesis test:

H0 : µ = µ0 versus

H1 : µ = µ1

which can be viewed as coherent signal detection in correlated
noise with known covariance (also referred to as the generalized
matched filter detection in Kay-II).
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Let us find the likelihood ratio for this problem:

Λ(x) =
p(x |µ1)
p(x |µ0)

=

1√
(2π)N |Σ |

· exp
[
−1

2 (x− µ1)T Σ−1 (x− µ1)
]

1√
(2π)N |Σ |

· exp
[
−1

2 (x− µ0)T Σ−1 (x− µ0)
]

= exp[µT
1 Σ−1 x− µT

0 Σ−1x− 1
2 µT

1 Σ−1µ1 + 1
2 µT

0 Σ−1µ0]

= exp
{

(µ1 − µ0)
T Σ−1 [x− 1

2 (µ0 + µ1)]︸ ︷︷ ︸
centering the observations

} H1

≷ τ. (4)

Maximum-likelihood test (i.e. the Bayes’ decision rule
for a 0-1 loss and a priori equiprobable hypotheses):

Λ(x)
H1

≷ 1 or, equivalently,

(µ1 − µ0)
T Σ−1 [x− 1

2 (µ0 + µ1)]
H1

≷ 0. (5)

Neyman-Pearson setting: In this case, we can absorb the
−1

2 (µ1 − µ0)T Σ−1 (µ0 + µ1) term into the threshold, which
leads to the test statistic:

T (x) = (µ1 − µ0︸ ︷︷ ︸
s

)T Σ−1x = sT Σ−1 x (6)

Note that we have defined

s
4
= µ1 − µ0.
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As usual, we decide H1 if T (x) > γ, the “new” threshold,
obtained upon absorbing the −1

2 (µ1 − µ0)T Σ−1 (µ0 + µ1)
term.

We can use prewhitening to handle the noise correlation.
Consider the Cholesky factorization Σ−1 = DTD, whose
application to prewhitening has already been discussed in
handout # 3. Then, T (x) can be written as

T (x) =

(stransf)T︷ ︸︸ ︷
sT DT

xtransf︷︸︸︷
D x =

N∑
n=1

xtransf[n] stransf[n]︸ ︷︷ ︸
correlator

. (7)

An interesting and useful fact about the Cholesky factorization
is that D is a lower-triangular matrix, implying that we can
compute xtransf[n] by passing the raw data x[n] through a
bank of causal time-varying linear filters (having coefficients
dn,i, i = 1, 2, . . . , n, n = 1, 2, . . . , N):

xtransf[n] =
n∑

i=1

dn,i︸︷︷︸
(n, i) element of D

x[i].

Special Case (Coherent Detection in AWGN, see pp. 4–7):

Let us choose µ0 = 0, µ1 − µ0 = µ1 = s
4
=


s[1]
s[2]
...

s[N ]

, and
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Σ = σ2 I, where σ2 is known noise variance and I denotes the
identity matrix. Substituting these choices into (6) and scaling
it by the positive constant σ2 yields the familiar correlator test
statistic:

sTx =
N∑

n=1

x[n] s[n]︸ ︷︷ ︸
correlator

.

Here, the maximum-likelihood test is [after scaling by the
positive constant σ2, see (5)]

sT (x− 1
2 s)

H1

≷ 0 ⇐⇒
N∑

n=1

x[n] s[n]
H1

≷ 1
2

N∑
n=1

(s[n])2

which, not surprisingly, can be implemented without knowing
the noise variance σ2.
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Coherent Detection in Gaussian Noise with
Known Covariance: Performance Analysis

Under the Neyman-Pearson Setting

Consider the conditional pdf of T (x) in (6)

T (x) = sT Σ−1 x

given µ. Note that we define

s
4
= µ1 − µ0.

Given µ, T (x) is a linear combination of Gaussian random
variables, implying that it is also Gaussian, with mean and
variance:

E [T (X) |µ] = sT Σ−1µ

var[T (X) |µ] = sT Σ−1s (not a function of µ).
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Now

PFA = P [T (X) > γ |µ = µ0]

= P

[ standard normal random variablez }| {
T (X)− sT Σ−1µ0√

sT Σ−1 s
>

γ − sT Σ−1µ0√
sT Σ−1s

#

= Q

(
γ − sT Σ−1µ0√

sT Σ−1s

)
(8)

and

PD = P [T (X) > γ |µ = µ1]

= P
[ standard normal random variable︷ ︸︸ ︷

T (X)− sT Σ−1µ1√
sT Σ−1 s

>
γ − sT Σ−1µ1√

sT Σ−1 s

]

= Q

(
γ − sT Σ−1µ1√

sT Σ−1 s

)
.

We use (8) to obtain a γ that satisfies the specified PFA:

γ√
sT Σ−1 s

= Q−1(PFA) +
sT Σ−1 µ0√

sT Σ−1 s

implying

PD = Q
(
Q−1(PFA)−

√
sT Σ−1 s

)
. (9)
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Here,
sT Σ−1 s = (µ1 − µ0)

T Σ−1 (µ1 − µ0)

is the deflection coefficient or (a reasonable definition for) the
signal-to-noise ratio (SNR).

Special Case (Coherent Detection in AWGN, see p. 4):

Again, let us choose µ0 = 0, µ1−µ0 = µ1 = s
4
=


s[1]
s[2]
...

s[N ]

,

and Σ = σ2 I, where σ2 is a known noise variance. Substituting
these choices into (9) yields

PD = Q
(
Q−1(PFA)−

√
sTs

σ2

)
= Q

(
Q−1(PFA)−

√∑N
n=1(s[n])2

σ2

)
.

Note that the detection performance depends on the signal s[n]
only through its energy

E = sTs =
N∑

n=1

(s[n])2

i.e. the shape of s[n] is irrelevant! This is not true for correlated
Gaussian noise, see the discussion on pp. 22–25.
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Coherent Detection in Gaussian Noise with Known
Covariance: Minimum Average Error Probability

(for Bayesian Decision-theoretic Approach with 0-1 Loss)

Consider minimizing the average error probability for the
practically most interesting case of equiprobable hypotheses:

π(µ0) = π(µ1) = 1
2 (10)

which leads to the maximum-likelihood test:

p(x |µ1)
p(x |µ0)︸ ︷︷ ︸

likelihood ratio Λ(x)

H1

≷
π(µ0)
π(µ1)

= 1

and reduces to (upon taking the log)

log Λ(x) = −1
2 (x− µ1)

T Σ−1 (x− µ1)
T

+1
2 (x− µ0)

T Σ−1 (x− µ0)
T (11)

= (
s︷ ︸︸ ︷

µ1 − µ0)
T Σ−1 [x− 1

2 (µ0 + µ1)]︸ ︷︷ ︸
4
= Υ(x)

H1

≷ 0. (12)
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Note that we have defined

Υ(x) = sT Σ−1 [x− 1
2 (µ0 + µ1)] (log-likelihood ratio)

s = µ1 − µ0.

To determine the minimum average error probability:

min av. error prob. = 1
2 P [Υ(X) > 0 |µ = µ0]

+1
2 P [Υ(X) < 0 |µ = µ1]

we note that, assuming (5), Υ(x) is conditionally Gaussian
given µ, with mean and variance:

E [Υ(X) |µ] = sT Σ−1 [µ− 1
2 (µ0 + µ1)]

var[Υ(X) |µ] = sT Σ−1 s (not a function of µ)

implying

E [Υ(X) |µ = µ1] = −E [Υ(X) |µ = µ0] = 1
2 sT Σ−1 s.
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Therefore,

P [Υ(X) > 0 |µ = µ0]

= P
[ Υ(X) + 1

2 sT Σ−1 s
√

sT Σ−1 s︸ ︷︷ ︸
standard normal random variable

>
1
2 sT Σ−1 s
√

sT Σ−1 s

∣∣∣µ = µ0

]

= Q
(

1
2

√
sT Σ−1 s

)
and, by symmetry,

P [Υ(X) < 0 |µ = µ1] = Q
(

1
2

√
sT Σ−1 s

)
implying, finally,

min av. error prob. = Q
(

1
2

√
sT Σ−1 s

)
. (13)

EE 527, Detection and Estimation Theory, # 5b 21



Optimal System Design Based on Detection
Performance: General Comments (Useful for

Many Applications)

• The detection performance is a function of the experiment
parameters. Hence, we can optimize it by adjusting these
parameters.

• There are two common performance criteria:

− maximizing PD for a given PFA (in the Neyman-Pearson
spirit), or

− minimizing the preposterior (Bayes) risk (in general) and
average error probability in particular (which is equal
to the preposterior risk for a 0-1 loss), popular in
communications.

• Examples of adjustable parameters:

− Exciting signal: direction of incidence, intensity,
waveform, polarity, etc.

− System: sensor placement etc.
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Example: Optimal Signal-waveform Design for
Coherent Detection in Correlated Gaussian

Noise with Known Covariance

Consider a coherent radar/sonar/NDE scenario with µ0 = 0,
µ1 = s, and correlated Gaussian noise with known covariance.
In the Neyman-Pearson spirit, let us maximize PD for a given
PFA. First, recall the expression (9) for the detection probability:

PD = Q
(
Q−1(PFA)−

√
sT Σ−1 s

)
.

Note that PD increases monotonically as the deflection
coefficient sT Σ−1 s grows. Since here larger signal energy
clearly improves the detection performance and our focus is
on optimizing the signal shape, we now impose the energy
constraint:

sTs = E (E is specified).

Hence, we have the following optimization problem:

max
s

sT Σ−1 s subject to sT s = E

or, (almost) equivalently,

max
s

sT Σ−1 s

sT s
=

1
mini λi(Σ )
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where λi(Σ ) are the eigenvalues of Σ . The optimal s
is proportional to an eigenvector of Σ that corresponds to
its smallest eigenvalue. Therefore, the optimized detection
performance is (for a specified signal energy E):

PD,opt = Q

(
Q−1(PFA)−

√
E

mini λi(Σ )

)
.

(Similar to) Examples 4.5 and III.B.4 in Kay-II and
Poor (respectively): Consider a special case with N = 2
observations and

Σ = σ2

[
1 ρ
ρ 1

]
where σ2 is known variance and −1 < ρ < 1 is known
correlation coefficient. It is easy to show that the eigenvalues
of this matrix are

λ1 = σ2 (1− ρ), λ2 = σ2 (1 + ρ) (eigenvalues)

and the corresponding eigenvectors are:

u1 =
1√
2

[
1
−1

]
, u2 =

1√
2

[
1
1

]
(eigenvectors).

Thus, if ρ > 0, mini λi(Σ ) = λ1 and an optimal signal s is

s ∝ u1 =⇒ s =

√
E
2

[
1
−1

]
.

EE 527, Detection and Estimation Theory, # 5b 24



On the other hand, if ρ < 0, mini λi(Σ ) = λ2 and an optimal
signal s is

s ∝ u1 =⇒ s =

√
E
2

[
1
1

]
and

PD,opt = Q

(
Q−1(PFA)−

√
E

σ2 (1− |ρ|)

)
.
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Two Known Signals in AWGN:
Minimum Average-Error Probability
Approach to Coherent Detection

(Bayesian Decision Theory for 0-1 Loss)

We first consider the binary case:

H0 : x[n] = s0[n] + w[n], n = 1, 2, . . . , N versus

H1 : x[n] = s1[n] + w[n], n = 1, 2, . . . , N

and the standard AWGN model for w[n]:

w[n] i.i.d.∼ N (0, σ2)

with known variance σ2. This problem fits into our coherent
detection formulation for Gaussian noise:

H0 : µ = µ0 versus

H1 : µ = µ1

with

Σ = σ2 I, µ0 =


s0[1]
s0[2]

...
s0[N ]

 , µ1 =


s1[1]
s1[2]

...
s1[N ]

 . (14)
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Example. Binary Phase-shift Keying (BPSK):

s0[n] = cos(2πf0 (n− 1)), s1[n] = cos(2πf0 (n− 1) + π).

Consider minimizing the average error probability for the
practically most interesting case of equiprobable hypotheses:

π(µ0) = π(µ1) = 1
2 (15)

which leads to the maximum-likelihood test. Substituting
(14) into the likelihood ratio (11)–(12) yields the maximum-
likelihood test:1

Λ(x) = exp
(
− 1

2 σ2
‖x− µ1‖2 +

1
2 σ2

‖x− µ0‖2
)

(16)

= exp
{ 1

σ2
· (µ1 − µ0)

T [x− 1
2 (µ0 + µ1)]

} H1

≷ 1 (17)

Equivalently, choose the following optimal decision regions
(using the notation from handout # 5):

X ?
m =

{
x : m = arg max

i∈{0,1}

[
(
N−1∑
n=0

x[n]si[n])︸ ︷︷ ︸
correlator

− 1
2 Ei︸︷︷︸

bias term

]}

1Here, ‖y‖ =
p

yT y denotes the Euclidean norm of a vector y.
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for m = 0, 1, where

Ei =
N∑

n=1

(si[n])2 (energy of si[n]), i = 0, 1.

Equation (16) provides an alternative interpretation of the
optimal decision region:

X ?
m =

{
x : m = arg min

i∈{0,1}
‖x− µl‖

}
which is the minimum-distance receiver: decide H0 if µ0 is
closer in Euclidean distance to x; otherwise decide H1.

Note: This maximum-likelihood/minimum-distance receiver
does not require the knowledge of the noise variance σ2 to
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make the decision. However, the knowledge of σ2 is key to
assessing the error-probability performance of this (and any
other) receiver in AWGN.
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If E0 = E1, simply select the hypothesis yielding the larger
correlation:

X ?
m =

{
x : m = arg max

i∈{0,1}

(N−1∑
n=0

x[n]si[n]︸ ︷︷ ︸
correlator

)}
.

Performance Analysis. Substituting (14) into (13) yields

min av. error prob. = Q
(

1
2

‖µ1 − µ0‖
σ

)
(18)

which has been derived for equiprobable hypotheses (10), see
also the derivation on pp. 19–21. As expected, this minimum
average error probability decreases as the separation between
µ1 and µ0 (quantified by ‖µ1 − µ0‖) increases.

Recall that we are focusing on the communication scenario here.
Due to the FCC regulations or the physics of the transmitting
device, we must impose an energy constraint. Let us constrain
the average signal energy [assuming equiprobable hypotheses
(10)]:

E = 1
2 (E0 + E1) (E is specified).

Now

‖µ1 − µ0‖2 = µT
1 µ1 − 2µT

1 µ0 + µT
0 µ0 = 2 E − 2 µT

1 µ0

= 2 E
(
1− µT

1 µ0

E

)
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which suggests the following definition of the signal correlation:

ρs
4
=

µT
1 µ0

E
.

Then

‖µ1 − µ0‖2 = 2 E (1− ρs)

and, upon substituting into (18), we obtain

min av. error prob. = Q
(√E (1− ρs)

2 σ2

)
which is minimized (for a given E) when ρs = −1, i.e. µ1 =
−µ0.

Example. BPSK:

s0[n] = cos(2πf0(n− 1)), s1[n] = cos(2πf0(n− 1) + π)

for n = 1, 2, . . . , N . In this case,

µ1 = −µ0 (antipodal signaling)

yielding

ρs = −1
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which is the optimal signaling choice that minimizes the average
error probability, and

min av. error probability = Q
(√ E

σ2

)
.

where

E = E0 = E1 ≈
NA2

2
.

Therefore, BPSK is the optimal signaling scheme for coherent
binary detection in AWGN with equiprobable hypotheses.

Example. Frequency-shift keying (FSK):

s0[n] = A cos
(
2πf0(n− 1)

)
s1[n] = A cos

(
2πf1(n− 1)

)
, n = 1, 2, . . . , N.

For |f1 − f0| � 1/N , we have

N−1∑
n=0

s0[n]s1[n] ≈ 0 i.e. ρs ≈ 0

and

min av. error probability = Q
(√ E

2 σ2

)
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implying that FSK is 3 dB poorer than BPSK at min av. error
probability = 10−3. See Fig. 4.12 in Kay-II:
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Multiple Known Signals in AWGN: Minimum
Average-Error Probability Approach to Coherent

Detection (Bayesian Decision Theory for 0-1 Loss)
(Ch. 4.5.3 in Kay-II)

Now, consider M -ary hypothesis testing:

H0 : x[n] = s0[n] + w[n], n = 1, 2, . . . , N versus

H1 : x[n] = s1[n] + w[n], n = 1, 2, . . . , N versus

...

HM−1 : x[n] = sM−1[n] + w[n], n = 1, 2, . . . , N

and the standard AWGN model for w[n]:

w[n] i.i.d.∼ N (0, σ2)

with known variance σ2. Define

µi =


si[1]
si[2]

...
si[N ]

 , i = 0, 1, . . . ,M − 1

and consider minimizing the average error probability for the
practically most interesting case of equiprobable hypotheses:

π(µ0) = π(µ1) = · · · = π(µM−1) =
1
M

(19)
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which leads to the maximum-likelihood test [obtained by
specializing eq. (23) from handout # 5 to the above model]:

X ?
m =

{
x : m = arg max

i∈{0,1,...,M−1}

[
(
N−1∑
n=0

x[n]si[n])︸ ︷︷ ︸
correlator

− 1
2 Ei︸︷︷︸

bias term

]}

for m = 0, 1, . . . ,M − 1, where

Ei =
N∑

n=1

(si[n])2 (energy of si[n]), i = 0, 1, . . . ,M − 1.

Can we compute a closed-form expression for the minimum
average error probability in the M -ary case? In general, no,
but we can obtain an upper bound by applying standard tricks
such as (combining) Chernoff and union bounds.

If the signals si[n] and sm[n] are orthogonal:

N∑
n=1

si[n]sm[n] = 0, ∀ i 6= m (20)

then it is fairly easy to obtain the exact expression for the
minimum average error probability. To further simplify matters,
we assume that all signals have equal energy:

Ei = E , i = 0, 1, . . . ,M − 1.
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We also define

Ti(x) =
(N−1∑

n=0

x[n]si[n]
)
− 1

2 E .

Now, (20) implies

cov[Ti(x), Tm(x) |µ = µl] (21)

= E
[
(

N∑
n1=1

w[n1]si[n1]) (
N∑

n2=1

w[n2]si[n2])
]

(22)

=
{

0, i 6= m

σ2
∑N

n=1(si[n])2 = σ2 E , i = m
(23)

i.e. the test statistics Ti(x), i = 1, 2, . . . ,M − 1 are mutually
independent (since, assuming (5), they are conditionally
Gaussian given µ) which allows the analytical computation
of the minimum average error-probability. An error occurs if
Hm is the true hypothesis but Tm(x) is not the largest among
the test statistics Ti(x), i = 0, 1, . . . ,M − 1. Therefore, using
(19), we obtain the expression for the minimum average error
probability:

min av. error probability

=
M−1∑
m=0

1
M

P
[
Tm(X) < max

i∈{0,1,...,M−1}\{m}
[Ti(X)]

∣∣∣µ = µm

]
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which simplifies, by symmetry, to a single conditional
probability:

min av. error prob. = P
[
T0(X) < max

i∈{1,2,...,M−1}
[Ti(X)]

∣∣∣µ = µ0

]
.

Since Ti(X) are affine functions of Gaussian random variables,
they are also Gaussian under H0:

p(Ti(x) |µ = µ0) =
{
N (1

2 E , σ2 E), i = 0
N (0, σ2 E), i 6= 0

and thus [using independence in (23), which is critical for
tractability]

min av. error probability

= 1− P
[
T0(X) > max

i∈{1,2,...,M−1}
[Ti(X)]

∣∣∣µ = µ0

]
= 1− P

[
T0(X) > T1(X), T0(X) > T2(X),

. . . , T0(X) > TM(X)
∣∣∣µ = µ0

]
total. prob.

= 1

−
Z

P
[
t0 > T1(X), t0 > T2(X), . . . , t0 > TM(X)

˛̨̨
T0(x) = t0, µ = µ0

i
pT0

(t0) dt0

independence
= 1−

∫ ∞

−∞

{M−1∏
i=1

P [Ti(X) < t0 |µ = µ0]
}

pT0(t0) dt0
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which can finally be simplified to [see Ch. 4.5 in Kay-II]:

min av. error probability

= 1−
∫ ∞

−∞
ΦM−1(u)

1√
2π

exp
[
− 1

2

(
u−

√
E
σ2

)2]
du

where Φ(·) denotes the standard normal cdf. We define the
signal-to-noise ratio (SNR) as

SNR =
E
σ2

.
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