
MARKOV CHAIN MONTE
CARLO (MCMC) METHODS

0These notes utilize a few sources: some insights are taken from Profs. Vardeman’s and
Carriquiry’s lecture notes, some from a great book on Monte Carlo strategies in scientific
computing by J.S. Liu.
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Markov Chains: Basic Theory

Definition 1. A (discrete time/discrete state space) Markov
chain (MC) is a sequence of random quantities {Xk}, each
taking values in a (finite or) countable set X , with the property
that

P{Xn = xn |X1 = x1, . . . , Xn−1 = xn−1}
= P{Xn = xn |Xn−1 = xn−1}.

Definition 2. A Markov Chain is stationary if

P{Xn = x |Xn−1 = x′}

is independent of n.

Without loss of generality, we will henceforth name the elements
of X with the integers 1, 2, 3, . . . and call them “states.”

Definition 3. With

pij
4
= P{Xn = j |Xn−1 = i}

the square matrix

P
4
= {pij}
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is called the transition matrix for a stationary Markov Chain
and the pij are called transition probabilities.

Note that a transition matrix has nonnegative entries and its
rows sum to 1. Such matrices are called stochastic matrices.

More notation for a stationary MC: Define

p
(k)
ij

4
= P{Xn+k = j |Xn = i}

and

f
(k)
ij

4
= P{Xn+k = j, Xn+k−1 6= j, . . . , Xn+1 6= j, |Xn = i}.

These are respectively the probabilities of moving from i to j
in k steps and first moving from i to j in k steps.

Definition 4. We say that a MC is irreducible if, for each i
and j, there exists a k (possibly depending upon i and j) such
that

p
(k)
ij > 0 for finite k.

Or, in words, a chain is irreducible if it is possible to eventually
get from any state i to any other state j in finite number of
steps.

Example: The chain with transition matrix

P =

 0 1 0
1
2 0 1

2
0 1 0
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is irreducible. But, the chain with transition matrix

P =

 1 0 0
0 1 0
0 0 1


is reducible.

Consider this block structure for the transition matrix:

P =
[

P1 0
0 P2

]
, P1, P2 are 2× 2 matrices

where the overall chain is reducible, but its pieces (sub-chains)
P1 and P2 could be irreducible.

Definition 5. We say that the ith state of a MC is transient
if ∞∑

k=0

f
(k)
ii < 1

and say that this state is persistent (or recurrent which is the
term used as well to describe this phenomenon) if

∞∑
k=0

f
(k)
ii = 1.

(Note that f
(0)
ii = 0.) A chain is called persistent if all of its

states are persistent. In words, a state is transient if once in
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it, there is some possibility that the chain will never return. A
state is persistent (recurrent) if once in it, the chain will with
certainty be in it again.

Definition 6. We say that state i of a MC has period t if
pii = 0 unless k = νt (where ν is an integer, i.e. k is an integer
multiple of t) and t is the largest integer with this property.
The state is aperiodic if no such t > 1 exists. An MC is called
aperiodic if all of its states are aperiodic.

Many sources (including Chapter 15 of the 3rd Edition of Feller
vol. 1) present a number of useful simple results about MCs.
Among them are the following.

Theorem 1. All states of an irreducible MC are of the same
type with regard to persistence (recurrence) and periodicity.

Theorem 2. A finite-state-space irreducible MC is persistent
(recurrent).

Theorem 3. A state i is persistent (recurrent) iff

∞∑
k=0

p
(k)
ii = ∞.

This is an important theorem!
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Proof. Interestingly, we can prove this theorem using the z
transform (which, in this context, is known as the probability
generating function).

Note that p
(0)
ii = 1 and, for n ≥ 1, we have

p
(n)
ii = P{Xn = i |X0 = i}

= P{X1 = i |X0 = i}︸ ︷︷ ︸
f

(1)
ii

·P{Xn−1 = i |X0 = i}︸ ︷︷ ︸
p
(n−1)
ii

+
n∑

k=2

P{Xk = i,Xk−1 6= i, . . . , X1 6= i |X0 = i}︸ ︷︷ ︸
f

(k)
ii

·P{Xn−k = i |X0 = i}︸ ︷︷ ︸
p
(n−k)
ii

.

Note also that f
(0)
ii = 0.

Combining the above facts, we write a general formula that
holds for all n ≥ 0:

p
(n)
ii = δn,0 +

n∑
k=0

f
(k)
ii p

(n−k)
ii .

Now, take the z transform of the above expression:

Pii(z) = 1 + Fii(z) Pii(z)
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and, consequently,

Pii(z) =
1

1− Fii(z)
.

State i is persistent (recurrent) if
∑∞

k=0 f
(k)
ii = 1, which is

equivalent to

Fii(z)
∣∣∣
z=1−

= 1

which further implies

Pii(z)
∣∣∣
z=1−

= +∞.

Conversely, state i is transient if
∑∞

k=0 f
(k)
ii < 1, which is

equivalent to

Fii(z)
∣∣∣
z=1−

< 1

which further implies

Pii(z)
∣∣∣
z=1−

< +∞.

2

Note: We can interpret Pii(z)
∣∣∣
z=1−

as the expected number

of visits to state i, starting from state i. Indeed, this expected
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number of visits is

E
[ ∞∑

k=0

δXk,i |X0 = i
]

=
∞∑

k=0

p
(k)
ii = Pii(z)

∣∣∣
z=1−

.

Clearly, if state i is persistent (recurrent), we will keep visiting
it over and over again, and the expected number of visits is
infinite!

Definition 7. We define the time of first “hitting” state i0 as

Ti0 = min{n : n ≥ 1, Xn = i0}.

Comments: Clearly, state i0 is persistent (recurrent) if

P{Ti0 < ∞|X0 = i0} = 1.

Definition 8. A persistent (recurrent) state i0 is positive
persistent (recurrent) if

E [Ti0 |X0 = i0]︸ ︷︷ ︸
mean recurrence time

=
∞∑

n=0

nf
(n)
i0i0

< ∞

and it is null recurrent if

E [Ti0 |X0 = i0] = ∞.

EE 527, Detection and Estimation Theory, # 4c 8



So, the expected number of steps that it takes for our chain to
revisit a positive-recurrent state is finite.

Lemma 1. Suppose that state i persistent (recurrent). Then,
this state is positive persistent (recurrent) if and only if

πi = lim
z→1

(1− z)Pii(z) > 0

and then

πi =
1∑∞

n=0 nf
(n)
ii

=
1

E [Ti |X0 = i]
.

Proof. From the proof of Theorem 3, we know

Pii(z) =
1

1− Fii(z)

and, therefore,

1− Fii(z)
1− z

=
1

(1− z)Pii(z)
.

Now

lim
z→1

1− Fii(z)
1− z

= F ′
ii(z)

∣∣∣
z=1

=
∞∑

n=0

nf
(n)
ii = E [Ti |X0 = i].

2
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Note: This lemma almost proves the convergence of averages
of transition probabilities, namely

1
n + 1

n∑
k=0

p
(n)
ii → 1

E [Ti |X0 = i]
as n → +∞

Consider

(1− z−1)Pii(z) =
∑∞

k=0 p
(k)
ii z−k∑∞

k=0 z−k
= lim

n→∞

∑n
k=0 p

(k)
ii z−k∑n

k=0 z−k

for any z such that |z| ≥ 1. If we could take the limit as z → 1
under the summations, we would get, using the above lemma:

πi = lim
n→∞

1
n + 1

·
n∑

k=0

p
(k)
ii =

1
E [Ti |X0 = i]

.

(This proof is not complete, since we did not verify that we can
take the limit as z → 1 under the summations but the result
holds.) The following theorems formalize the key results, part
of whose proof we have hinted above.

Theorem 4. Suppose that an MC is irreducible, aperiodic
and persistent (recurrent). Suppose further that, for each state
i, the mean recurrence time is finite, i.e.

E [Ti0 |X0 = i0] =
∞∑

k=0

kf
(k)
ii < ∞
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implying that the entire chain is positive recurrent! Then, an
invariant/stationary distribution for the MC exists, i.e. there
exist πj with πj > 0 and

∑
j πj = 1 such that

πj =
∑

i

πipij (equation of full balance)

or, in the matrix notation

πTP = πT , π = [π1, π2, . . .]T .

In words, if the chain is started with initial distribution {πj} (of
the states), then, after one transition, it is in states 1, 2, 3, . . .
with probabilities {π1, π2, π3, . . .}. Further, this distribution
{πj} satisfies

πj = lim
n→∞

1
n + 1

n∑
k=0

p
(k)
ij , ∀i

and

πj =
1∑∞

k=0 kf
(k)
jj

=
1

E [Tj |X0 = j]
.

Comments:

(A little) verification that, for stationary distributions, after one
transition, the chain is in states 1, 2, 3, . . . with probabilities
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{π1, π2, π3, . . .}:

P{X1 = j} =
∑

i

P{X1 = j, X0 = i}

=
∑

i

P{X1 = j |X0 = i}︸ ︷︷ ︸
pij

P{X0 = i}︸ ︷︷ ︸
πi

= πj!

Here is how we can compute:

E [g(X1) |X0 = i] =
∑

j

pij g(j)

where g(·) is a real function. Or, in matrix form (for a
finite-state-space MC):

E [g(X1) |X0 = 1]
E [g(X1) |X0 = 2]

...
E [g(X1) |X0 = N ]

 = P


g(1)
g(2)

...
g(N)

 .
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Converse to Theorem 4:

Theorem 5. An irreducible, aperiodic MC for which there
exists {πj} with πj > 0 and

∑
πj = 1 such that

πj = lim
k→∞

p
(k)
ij , ∀i

must be persistent (recurrent) with

πj =
1∑∞

k=1 kf
(k)
jj

.

There is an important “ergodic” result that guarantees that
“time averages” have the right limits:

Theorem 6. Under the hypotheses of Theorem 4, if g(·) is a
real-valued function such that∑

j

|g(j)|πj < ∞

then, for any j, if X0 = j

1
n + 1

n∑
k=0

g(Xk) →
1

n + 1

∑
j

g(j)πj as n → +∞.
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Note that the choice of g(·) as an indicator (Kronecker delta)
provides approximations for stationary probabilities:

1
n + 1

n∑
k=0

δXk,i → πi as n → +∞.

With this background, the basic idea of MCMC is the following.
If we wish to simulate from a distribution {πj} or approximate
properties of the distribution that can be expressed in terms
of some function g, we find a convenient MC {Xk} whose
invariant distribution is {πj}. From a starting state X0 = i0,
one uses P to simulate X1 . Using the realization X1 = x1

and P , one simulates X2 etc. We apply Theorem 6 to
approximate the quantity of interest. Actually, it is common
practice to use a “burn in” (i.e. discard a certain number of
initial samples X0, X1, . . . , Xburnin−1

) before starting the kind
of time average indicated in Theorem 6.
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Markov Chain Simulations

Basic Idea: Suppose the sampling from p(θ|x) is hard, but
that we can somehow generate a Markov chain {θ(t), t ∈ T}
with stationary distribution p(θ|x).

Note: Here, we know the stationary distribution and seek
transitions

P(θ(t+1) |θ(t))

that will take us to this stationary distribution.

We will start from some initial guess θ(0) and let the chain run
for n steps (where n is large), i.e. until it reaches its stationary
distribution. Upon convergence, all additional steps are draws
from the stationary distribution p(θ|x).

All MCMC methods are based on the same idea — the
difference is just in how the transitions in the Markov chain are
created.
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Gibbs Sampler (Again) in the Bayesian Context

Idea: Cycle through all possible full conditional posterior
distributions. For example, suppose that θ = [θ1, θ2, θ3]T

and that the target distribution is p(θ|x). Then, the steps of
the Gibbs sampler are

(a) Start with a guess θ(0) = [θ(0)
1 , θ

(0)
2 , θ

(0)
3 ]T .

(b) Draw θ
(1)
1 from

p(θ1 | θ2 = θ
(0)
2 , θ3 = θ

(0)
3 ,x).

(c) Draw θ
(1)
2 from

p(θ2 | θ1 = θ
(1)
1 , θ3 = θ

(0)
3 ,x).

(d) Draw θ
(1)
3 from

p(θ3 | θ1 = θ
(1)
1 , θ2 = θ

(1)
3 ,x).
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The above steps complete one cycle of the Gibbs sampler.

Repeat the above steps n times (i.e. until the chain
has converged) and, upon convergence, the draws

θ(n+1),θ(n+2), . . . are samples from the stationary distribution
p(θ |x). Here, 0, 1, . . . , n is called the “burn-in” period.

Note: We can update the θs one at a time (as above) or in
blocks.
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A (Toy) Discrete Example: How Gibbs Can Fail

Suppose θ = [θ1, θ2]T and that the pmf p(θ |x) is described
by the following table:

θ2\θ1 1 2 3 4
4 0 0 + +
3 0 0 + +
2 + + 0 0
1 + + 0 0

Here, the + signs indicate some positive probabilities that need

to sum to 1. Start with θ(0) = [θ(0)
1 , θ

(0)
2 ]T . If we use Gibbs

sample and start with θ(0) in the upper-right corner, we will
never escape the upper-right corner (of the probability space)!
Similarly, if we start in the lower-left corner, we will never leave
that part of the probability space. In MC terminology, our
chain is reducible!

Regardless of how large burn-in period 0, 1, . . . , n we choose,
no sequence θ(n+1),θ(n+2), . . . can possibly “look like” coming
from the distribution described by the above table!

Morale of this story: We should not start from one place
only! If we start from only one place, we will never detect the
above problem.

EE 527, Detection and Estimation Theory, # 4c 18



If we are lucky and smart enough to run several chains (using
several starting values), we may detect a problem if we see
different chains giving different results.

Here is another scenario that may happen in practice:

θ2\θ1 1 2 3 4
4 0 0 + +
3 0 0 + +
2 + + ε 0
1 + + 0 0

where ε is very small. In this case, Gibbs will produce time
plots like

We would find that correlations between, say θ
(i)
1 and θ

(i+1)
1

are very large in this case. To fairly represent p(θ|x), we
would need a very large number of iterations. In this case, the
problem is “poor mixing,” caused here by relatively isolated
islands of probability.

Clearly, poor mixing may occur due to
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• difficult pdf/pmf to sample from (as in the above example)
or

• poor sampling algorithm (perhaps not tuned well)

or both.
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Why Gibbs Might Work

For simplicity, consider a 3-dimensional case with discrete
probability space for the random variables α, β, and γ making

θ =

 α
β
γ

 .

We wish to sample from p(θ) = p(α, β, γ). Recall the Gibbs

sampler: start with some θ(0) =

 α(0)

β(0)

γ(0)

 and draw new

samples by cycling as follows:

θ(1) =

 α(1)

β(0)

γ(0)

 where α(1) ∼ pα|β,γ(· |β(0), γ(0))

θ(2) =

 α(1)

β(1)

γ(0)

 where β(1) ∼ pβ|α,γ(· |α(1), γ(0))

θ(3) =

 α(1)

β(1)

γ(1)

 where γ(1) ∼ pγ|α,β(· |α(1), β(1))
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θ(4) =

 α(2)

β(1)

γ(1)

 where α(2) ∼ pα|β,γ(· |β(1), γ(1))

etc.

For example, for an “α substitution,“ we have:

P

(
θ(t) =

 α′

β
γ

 ∣∣∣∣∣θ(t−1) =

 α
β
γ

) =
p(α′, β, γ)∑
a p(a, β, γ)

.

Now, consider the case where θ(t−1) is coming from p(α, β, γ).
Then, using the total probability theorem, we can compute the
pmf of θ(t):

P

(
θ(t) =

 α′

β
γ

) =
∑
α

P

(
θ(t) =

 α′

β
γ

 ∣∣∣∣∣θ(t−1) =

 α
β
γ

)
·p(α, β, γ)

=
∑
α

p(α′, β, γ)∑
a p(a, β, γ)︸ ︷︷ ︸

does not depend on α

·p(α, β, γ)

=
p(α′, β, γ)∑
a p(a, β, γ)

·
∑
α

p(α, β, γ) = p(α′, β, γ).

So, if θ(t−1) comes from p(·), then θ(t−1) comes from p(·) as
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well (equation of full balance)! The same kind of reasoning
shows that the equation of full balance also holds for β and γ
substitutions.
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General Theoretical Conditions for MCMC
Methods to Work

See the MC theory at this beginning of this handout. In words,
the conditions of the theorems from the MC theory part are:

• irreducibility ≡ no isolated islands of probability;

• aperiodicity ≡ no cyclic structure where we can get back to
a state in some set number of transitions (> 1) or a multiple
thereof;

• persistence (recurrence) ≡ we are guaranteed to get back to
any state that we leave.
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A Gibbs Sampling Example
(from STAT 544 notes by Prof. Carriquiry)

Suppose we have observations x1, x2, . . . , xn following two
Poisson distributions:

xi ∼ Poisson(λ), for i = 1, 2, . . . ,m

xi ∼ Poisson(φ), for i = m + 1,m + 2, . . . , n

where the change point m is unknown. The unknown
parameters are λ, φ, and m. Define x = [x1, x2, . . . , xn]T .

We use a Bayesian approach to estimate these parameters.
Choose the following priors:

λ ∼ Gamma(α, β)

φ ∼ Gamma(γ, δ)

m = uniform(1, 2, . . . , n).
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Then, the joint posterior distribution is

p(λ, φ,m |x)

∝ λα−1 exp(−λβ) · φγ−1 exp(−φ δ) · i{1,2,...,n}(m)︸ ︷︷ ︸
prior

m∏
i=1

exp(−λ) λxi ·
n∏

j=m+1

exp(−φ) φxi

︸ ︷︷ ︸
likelihood

∝ λx1,?(m)+α−1 exp[−λ · (m + β)]

·φx2,?(m)+γ−1 exp[−φ · (n−m + δ)] · i{1,2,...,n}(m)
4
= f(m,λ, φ, x)

where x1,?(m) =
∑m

i=1 xi and x2,?(m) =
∑n

i=m+1 xi.

Note: If we knew m, the problem would be trivial to solve,
since we chose conjugate priors for λ and φ. When we do not
known m, we can use the Gibbs sampler.

We need to find full conditionals. Select pieces of the joint
posterior that depend on each parameter.

Full conditional pdf of λ:

p(λ |m,φ, x) ∝ λx1,?(m)+α−1 exp[−λ (m + β)]

∝ Gamma(α + x1,?(m),m + β).
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Full conditional pdf of φ:

p(φ |m,λ,x) ∝ φx2,?(m)+γ−1 exp[−φ (n−m + δ)]

∝ Gamma(γ + x2,?(m), n−m + δ).

Full conditional pmf of m ∈ {1, 2, . . . , n}:

p(m |λ, φ,x) =
1
c
· f(m,λ, φ, x)

where

c =
n∑

k=1

f(k, λ, φ, x)

and

f(m,λ, φ, x) = λx1,?(m)+α−1 exp[−λ(m + β)]

·φx2,?(m)+γ−1 exp[−φ(n−m + δ)]

·i{1,2,...,n}(m).

We can use the inverse-cdf method to sample from
p(m |λ, φ,x): just tabulate the pmf.

After the burn-in period (first K samples, say), we collect N
draws (m(K), λ(K), φ(K)), (m(K+1), λ(K+1), φ(K+1)), . . . ,
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(m(K+N−1), λ(K+N−1), φ(N+K−1)). Then, for example, we
can estimate the change point m simply as

m̂ =
1
N

N−1∑
i=0

m(K+i) ≈ the posterior mean of p(m|x).
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Can We Apply Grouping and Collapsing
Ideas Here?

p(m,φ |x) =
p(φ,m, λ, x)
p(λ |m,φ, x)

∝︸︷︷︸
keep all the terms
containing φ,m, λ

f(m,λ, φ, x)
(m+β)

x1,?(m)+α

Γ(x1,?(m)+α) · λx1,?(m)+α−1 exp[−λ (m + β)]

=
λx1,?(m)+α−1 exp[−λ(m + β)]

(m+β)
x1,?(m)+α

Γ(x1,?(m)+α) · λx1,?(m)+α−1 exp[−λ (m + β)]

·φx2,?(m)+γ−1 exp[−φ · (n−m + δ)] · i{1,2,...,n}(m)

=
Γ(x1,?(m) + α)

(m + β)x1,?(m)+α
· φx2,?(m)+γ−1 exp[−φ · (n−m + δ)]

·i{1,2,...,n}(m)
4
= F (m,φ, x).

Is p(φ |m,x) a standard pdf? Yes, we recognize it in the table
of distributions:

p(φ |m,x) ∝ φx2,?(m)+γ−1 exp[−φ (n−m + δ)]

∝ Gamma(γ + x2,?(m), n−m + δ)
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which is the same as p(φ |m,λ,x) — what can we conclude
from that? The pmf p(m |φ,x) is

p(m |φ,x) =
F (m,φ, x)∑n
k=1 F (k, φ, x)

.

So, we could just cycle between the following two steps:

• Draw a φ(t+1) from p(φ |m(t),x),

• Draw an m(t+1) from p(m |φ(t+1),x).

This is a collapsed Gibbs sampler (where λ has been integrated
out). We could keep λ and integrate φ out, using analogous
arguments.

EE 527, Detection and Estimation Theory, # 4c 30



Non-Standard Distributions

It may happen that one or more full conditionals is not a
standard distribution. What do we do then? Try

• inverse cdf method, grid method, rejection sampling,
composition etc.

• some approximation (e.g. a normal or t-distribution
approximation around the MAP estimate, see handout #
4).

• more general MCMC algorithms: Metropolis, Metropolis-
Hastings (M-H), or slice sampler.
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M-H Algorithm and Why it Might Work

We first consider the scalar case, for simplicity. (An extension
to the vector case is trivial.)

• Goal: Simulate from a given distribution p(θ) [≡ p(θ|x) in
the Bayesian context].

• Strategy: Simulate an MC so that the limiting distribution
is p(θ).

• Algorithm:

Start from a number θ0 within the support of p(θ);
Step 1: Draw a number θ? from the proposal distribution
J(θ? | θ(t));

Step 2: Calculate the M-H ratio:

r =
p(θ?)J(θ(t)|θ?)
p(θ(t))J(θ?|θ(t))

;

Step 3:

θ(t+1) =
{

θ?, with probability p = min{1, r}
θ(t), with probability 1− p

.

• Remark 1: Possible choices of the proposal distribution
(the convergence rate critically depends upon these choices):

EE 527, Detection and Estimation Theory, # 4c 32



− for discrete p(θ), we may choose simple symmetric random
walk:

J(θ? | θ(t)) =
{

θ(t) + 1, with probability pssrw = 1
2

θ(t) − 1, with probability 1− pssrw = 1
2

.

− for continuous p(θ), choose a random-walk Gaussian
proposal pdf:

J(θ? | θ(t)) = N
(
θ | θ(t), σ2︸︷︷︸

tuning parameter

)
.

In both above examples, the proposal distributions are
symmetric:

J(θ? | θ(t)) = J(θ(t) | θ?)
and, consequently, the M-H ratio simplifies to

r =
p(θ?)
p(θ(t))

which corresponds to the Metropolis algorithm (invented in
the 1950s).

• Remark 2: How to do Step 3? Simulate a random number
u ∼ uniform(0, 1) and select

θ(t+1) =
{

θ?, if u < r
θ(t), if u ≥ r
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=⇒ jump occurs with probability min{1, r}.

• Remark 3: How do we known that the chain has converged?
We can do the following:

θ(0), θ(1), . . . , θ(l), . . . , θ(j)︸ ︷︷ ︸
histogram

, θ(j+1) . . . , θm︸ ︷︷ ︸
histogram

. . . , θ(n).

Or perhaps use autocorrelation function? These are easy to
do in the one-dimensional case considered here.

• Remark 4: Why M-H will converge to p(θ).
First, note that J(θ?|θ(t)) is the probability of proposed
probability, so it is different from the actual transition
probability P(θ? | θ(t)) because an acceptance-rejection step
is involved. We compute the transition probability as

P(θ? | θ(t)) = J(θ?|θ(t)) ·min
{

1,
p(θ?)J(θ(t)|θ?)
p(θ(t))J(θ?|θ(t))

}
.
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Therefore, if we start from p(θ(t)), we get

p(θ(t))P(θ? | θ(t))

= p(θ(t)) J(θ?|θ(t)) min
{

1,
p(θ?)J(θ(t)|θ?)
p(θ(t))J(θ?|θ(t))

}
= min

{
p(θ(t)) J(θ?|θ(t)), p(θ?)J(θ(t)|θ?)

}
= p(θ?) J(θ(t)|θ?) min

{p(θ(t))J(θ?|θ(t))
p(θ?)J(θ(t)|θ?)

, 1
}

= p(θ?)P(θ(t) | θ?).

Therefore, in the discrete state-space case [with state space
{θ1, θ2, . . . , θM}], we have

M∑
i=1

p(θi)P(θj | θi)︸ ︷︷ ︸
total probability

=
M∑
i=1

p(θj)P(θi | θj) = p(θj)

where the last equality follows from

M∑
i=1

P(θi | θj) = 1.

Putting the above equations in the matrix form (for j =
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1, 2, . . . , J), we obtain

pTP = p (equation of full balance)

i.e. p = [p(θ1), p(θ2), . . . , p(θM)]T is the stationary
distribution!

• Remark 4’: The above proof implies that the following
condition must hold:

J(θ?|θ) > 0 if and only if J(θ | θ?) > 0.

Otherwise, the sampler will not converge to the desired
stationary distribution. This is the only serious restriction
on the proposal distribution.

• Remark 5: The pdf/pmf p(θ) needs to be known only up
to a proportionality constant, since this constant cancels out
when computing the M-H ratio.
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M-H Algorithm: A Simple Example

• Target pdf: p(θ) = N (µ, σ2);

• Proposal pdf: J(θ? | θ(t)) = N (θ(t), τ2);

Therefore, since J(θ? | θ(t)) = J(θ(t) | θ?) (symmetry, i.e. the
Metropolis case), we have

r =
p(θ?)
p(θ(t))

= exp
[
− 1

2 σ2
(θ? − µ)2 +

1
2 σ2

(θ(t) − µ)2
]
.

Important side comment: All the above expressions are nice
and fine for writing, but when implementing, in general, do all
your computations in the log scale.
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Random-walk Metropolis

• Here, we generate candidates θ? using random walk. (Note
that we trivially switch to the vector notation.)

• A popular choice for proposal pdf. Pick the proposal
distribution to be Gaussian centered at the current draw:

J(θ?|θ(t)) = N (θ(t), V ).

• Comments:

− The above J(·|·) is symmetric, hence this is a Metropolis
sampler.

− It may be difficult to choose a good V :
◦ If V too small, it takes a long time to explore the

parameter space.
◦ If V too large, jumps to extremes are less likely to be

accepted; consequently, the chain stays in the same
place too long.

◦ The ideal V : posterior variance. Bad choice of V leads
to poor mixing (we have introduced a notion of poor
mixing before).
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◦ Of course, if the problem is difficult, we may not
be able to find any V that works (i.e. explores the
entire parameter space within our lifetimes)!

− Good acceptance rate (if we can get it): 20% to 50%, in
particular,
◦ min{1, r} ∈ [40%, 50%] in the scalar case;
◦ min{1, r} ∈ [20%, 30%] in the vector case.

but even following this suggestion does not guarantee good
performance, since performance will also depend on difficulty
(i.e. “nastiness” of the stationary distribution).
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Independence Sampler

• Here, the proposal distribution J(θ? |θ(t)) does not depend

on θ(t).

• Just choose a distribution p̃(θ) and draw samples from it.

• Here, p̃(θ?) = J(θ? |θ(t)) 6= J(θ(t) |θ?) = p̃(θ(t)) (it is
good to see some M-H example that is not a Metropolis
sampler) and, therefore, we have

r =
p(θ?) p̃(θ(t))

p(θ(t)) p̃(θ?)
=

φ(θ?)

φ(θ(t))

where

φ(θ) =
p(θ)
p̃(θ)

is simply the importance ratio.

• This sampler is an alternative to rejection sampling and
importance sampling.

• Its performance depends on how well p̃(θ) approximates
p(θ).

• This sampler has a “global” nature — in contrast to the
random-walk Metropolis algorithm, which tends to do more
“local” explorations.
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• Typically [e.g. if the support of p(θ) is infinite], p̃(θ) should
be chosen to have heavy tails. In this case, we can use a
(multivariate) t distribution for p̃(θ); the smaller the degree-
of-freedom parameter of the t distribution, the heavier the
tails.

A useful reference:

J.S. Liu, “Metropolized independent sampling with comparisons
to rejection sampling and importance sampling,” Statistics and
Computing, vol. 6, pp. 113–119, Jun. 1996.

EE 527, Detection and Estimation Theory, # 4c 41



(Univariate) Slice Sampler

Consider now sampling a random variable φ from a nonstandard
p(φ) ∝ h(φ).

(Seemingly Counter-Intuitive!) Idea:

• Invent a convenient bivariate distribution for, say, φ and u,
with marginal pdf for φ specified by h(φ).

• Then, use Gibbs sampling to make

(φ(0), u(0)), (φ(1), u(1)), (φ(2), u(2)), . . . , (φ(T ), u(T )).

Create an auxiliary variable u just for convenience!
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(Univariate) Slice Sampler

“Invent” a joint distribution for φ and u by declaring it to be

uniform on :

p(φ, u) =
{

1
c, 0 < u < h(φ)
0, otherwise

∝ i(0,h(φ))(u).
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With this joint pdf, P [φ ≤ 13] =
∫ 13

−∞
h(φ)

c dφ.

The marginal pdf of φ is indeed specified by h(φ) =⇒
if we figure out how to do Gibbs sampling, we know how to
generate a φ from h(φ).
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Gibbs Sampler is Easy in This Case!

p(u |φ) = uniform
(
0, h(φ)

)
p(φ |u) = uniform on {φ |h(φ) > u}︸ ︷︷ ︸

“slice”

.

Step 1: Given φ(t−1), sample u(t) ∼ uniform
(
0, h(φ(t−1))

)

Step 2: Given u(t), sample φ(t) Uniform from slice(t)
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If we can algebraically solve h(φ) = u(t), our task is easy. What
if not?

Step 2 implementation using the rejection method

When we have band bounds on φ, say φMIN ≤ φ ≤ φMAX

generate i.i.d. values φ from uniform(φMIN, φMAX) until we
produce a φ in the slice [i.e. h(φ) > u(t)], which we then
accept as φ(t). This is nothing but rejection sampling!

Note: For multivariate extensions of the slice sampler
(particularly the “shrinkage idea”), see

R.M. Neal, “Slice sampling,” Ann. Statist., vol. 31, pp. 705–
741, June 2003.
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MCMC: Final General Comment

MCMC will in practice (i.e. when dealing with real problems
rather than toy examples) yield only a “best guess” of the real
posterior. This is all that we can expect.
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A Bit About Long-run Behavior of MCMC
Samplers

Suppose that we have an “ergodic” Markov chain {θ(t) | t =
0, 1, 2, . . .} generated by the transition kernel P with stationary
distribution p(θ).

Suppose that we wish to evaluate

G =
∫

Ω

g(θ) p(θ) dθ < ∞

which we discussed already before. Recall our basic estimate
of G:

ĜN =
1
N
·

N∑
t=1

g(θ(t))︸ ︷︷ ︸
SN(g)

.

As seen in Theorem 6, under certain regularity conditions, we
have

1
N

SN(g) → G

or, in words, time averages converge to the ensemble average.

The asymptotic variance of the above estimate:

var
[ 1
N

SN(g)
]
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where var is taken with respect to the transition kernel p·,·
assuming stationarity, i.e. that θ(1) comes from p(θ(1)). Define

v(g,P)
4
= lim

n→∞
N · var

[ 1
N

SN(g)
]
.

Under certain regularity conditions,

√
N
( 1
N

SN(g)−G
)

d→ N (0, v(g))

implying that v(g,P) determines the asymptotic accuracy of
1
N SN(g). Note that

N · var
[ 1
N

SN(g)
]

=
1
N
·
{

var[g(θ(1))]︸ ︷︷ ︸
σ2

+var[g(θ(2))]︸ ︷︷ ︸
σ2

+ . . .

+var[g(θ(N))]︸ ︷︷ ︸
σ2

+
N∑

l=1

N∑
m = 1
m 6= l

cov[g(θ(l)), g(θ(m))]︸ ︷︷ ︸
ρl−m·σ2

}

= σ2
[
1 + 2

n−1∑
j=1

(
1− j

n

)
ρj

]
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where

σ2 = var[g(θ(t))]

ρl−m = ρm−l =
cov[g(θ(l)), g(θ(m))]

σ2

= correlation coeff. between g(θ(l)) and g(θ(m)) .

Suppose that we wish to compare two ergodic Markov chains
with the same stationary distribution p(θ). Then, the one for
which the ρjs are smaller will have more accurate estimates
(because σ2 will be the same for both chains).

To summarize, we look for an MCMC sampler with as small
autocorrelation among its draws as possible.

Note: As N −→∞,

N · var
[ 1
N

SN(g)
]
≈ σ2

(
1 + 2

∞∑
j=1

ρj

)
and, therefore,

v(g, p·,·) = σ2
(
1 + 2

∞∑
j=1

ρj

)
=⇒ N · var

[
1
N SN(g)

]
−→ v(g,P) (instead of just σ2, which

would have been the case if the θ(t)s were all independent).
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Here, the factor 1 + 2
∑∞

j=1 ρj is the penalty that we pay for
using dependent samples. Define integrated autocorrelation
time of g as

τint(g,P) = 1
2 +

∞∑
j=1

ρj

a definition taken from the physics literature. Now, we have

var
[ 1
N

SN(g)
]

= σ2
/( N

2τint(g,P)

)
which is approximately the variance that we would have
achieved if we had N

2τint(g,P) independent observations.

Therefore, the quantity

N

2 τint(g,P)

is called the effective sample size. We can use (estimated
or, in some cases, analytical) integrated autocorrelation time
or effective sample size to assess the performance of a given
sampler.
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A FEW BITS AND PIECES ON MCMC
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Combining M-H Samplers

Suppose that we have a bunch of M-H proposals Jj(· | ·), j =
1, 2, . . . , J for sampling from the same density p(θ) and let
us assign a probability qj to each proposal. Define q =
[q1, q2, . . . , qJ ]T . Let us also denote by Pj(· | ·) the M-H
transition kernel corresponding to Jj(· | ·), j = 1, 2, . . . , J .

Consider the following transition kernel:

[P(θ? |θ(t))]MT =
J∑

j=1

qj Pj(θ? |θ(t))

where MT stands for mixture of M-H Transition kernels. How
do we construct such a sampler?

Use composition sampling: pick the transition kernel Pj(· | ·)
with probability qj, j = 1, 2, . . . , J . In particular, here are the
details of the MT scheme:

Start from a value θ0 within the support of p(θ);

Step 1: Draw a j ∈ {1, 2, . . . , J} with probability qj;

Step 2: Draw a θ? from the jth proposal distribution
Jj(θ? |θ(t));
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Step 3: Calculate the M-H ratio:

rj
MT =

p(θ?)Jj(θ(t) |θ?)

p(θ(t))Jj(θ? |θ(t))
;

Step 4:

θ(t+1) =
{

θ?, with probability p = min{1, rj
MT}

θ(t), with probability 1− p
.
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Combining M-H Samplers (cont.)

An alternative way of combining M-H samplers. Construct
a mixture of J proposals:

[J(· | ·)]MP =
J∑

j=1

qj Jj(· | ·)

where MP stands for mixture of M-H Proposals. Here, we use
[J(· | ·)]MP at each iteration.

Start from a value θ0 within the support of p(θ);

Step 1: Draw a j ∈ {1, 2, . . . , J} with probability qj;

Step 2: Draw a θ? from the proposal distribution Jj(θ? |θ(t));

Step 3: Calculate the M-H ratio:

rMP =
p(θ?)

∑J
j=1 qj Jj(θ(t) |θ?)

p(θ(t))
∑J

j=1 qj Jj(θ? |θ(t))
;

Step 4:

θ(t+1) =
{

θ?, with probability p = min{1, rMP}
θ(t), with probability 1− p

.
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What to use in practice: mixture of M-H updates or mixture
of M-H proposals? It can be shown that it is better to use the
mixture of M-H proposals with transition kernel [P(θ? |θ(t))]MP

than [P(θ? |θ(t))]MT, but

• using [P(θ? |θ(t))]MP requires evaluation of all the proposal
densities at every iteration, even though we sample from one
density only;

• [P(θ? |θ(t))]MT is not as expensive as [P(θ? |θ(t))]MP.

An idea for showing that [P(θ? |θ(t))]MP is better: Show
that rMP > rMT =⇒ draws from the MP sampler will be less
correlated than those from the MT sampler!
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Hence,

• In some cases, it may be more beneficial to

− run the cheaper chain with the transition kernel
[P(θ? |θ(t))]MT longer

compared with

− a shorter run taking the same amount of time of
the more “efficient” chain with the transition kernel
[P(θ? |θ(t))]MP.

Recall the definition of the effective sample size:

N

2 τint(g,P)
.

Equivalently, we may have

NMP

2 τMP
int (g,P)

<
NMT

2 τMT
int (g,P)

even though τMP
int (g,P) < τMT

int (g,P).
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A Bit About General Conditional Sampling
(Ch. 8 in Liu)

Gibbs is the first and simplest conditional-sampling method.
But, Gibbs is restricted by the parameterization/coordinate
system.

Formulate “a move” in the space as a point being
transformed/mapped to another point. Possible moves
constitute a set of transformations.

A Gibbs-sampler move for fixed θ2: draw a θ
(t+1)
1 from

pθ1 | θ2
(θ1 | θ(t)

2 ) ∝ pθ1,θ2(θ1, θ
(t)
2 ).

which corresponds to a move:

θ
(t)
1 → θ

(t+1)
1

where θ
(t)
1 is the value of θ1 from the previous cycle. This can

be seen as
θ
(t)
1 → θ

(t)
1 + c

where c is drawn from the following pdf/pmf:

pc

(
c | (θ(t)

1 , θ
(t)
2 )
)
∝ pθ1,θ2(θ

(t)
1 + c, θ

(t)
2 ).

EE 527, Detection and Estimation Theory, # 4c 58



This move is fairly limited — Gibbs jumps only in directions
parallel to the coordinate axes.

How about some other direction (corresponding to rotating the
coordinate system, say), such as

(θ1, θ2) → (θ1 + c, θ2 + c)?

This is effectively a reparametrization and we need to make
sure that p(θ) is invariant under this new move. To do that,
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we draw c from

pc

(
c | (θ1, θ2)

)
∝ pθ1,θ2(θ1 + c, θ2 + c).
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Let’s be Even More Creative . . .
Try

(θ1, θ2) → γ · (θ1, θ2) (1)

or, perhaps,
(θ1, θ2) → (θ1, θ2) A

where A is an orthonormal matrix. What are the distributions
of γ and A so that pθ(θ) is invariant under these moves?

In general, we have a group of transformations Γ to represent
possible moves. Hence, pick

γ ∈ Γ

and apply a move θ → γ(θ). In the scaling case (1), we draw
γ from a pγ | θ(γ |θ) so that

θ′ = γ θ ∼ pθ(·) if θ ∼ pθ(·).

Note: the group of transformations partitions the space into
“orbits.”
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A Theorem

Theorem 7. Suppose that Γ = {all γ} forms a locally
compact group and let H(dγ) be its unimodular Haar measure.
If θ ∼ pθ(θ) and

γ ∼ pγ|θ(γ |θ) ∝ pθ(γ(θ)) ·
∣∣∣∂γ(θ)

∂θT

∣∣∣ ·H(dγ) (2)

then γ(x) follows a distribution pθ(·).

The distribution (2) is “independent” of the position θ.

Note: A left-invariant Haar measure satisfies:

H( γB︸︷︷︸
γ acting on

every element of B

) = H(B), ∀γ, B.

Example:
pz(z) ∝ e−β·H(z).

Update
z → z + t iA(z)

where z ≡ all lattice points (pixels) j. Here, t should be drawn
from

pt(t) ∝ e−β·H(z+t iA(z))

EE 527, Detection and Estimation Theory, # 4c 62



where A is a subset of the pixel set and iA(z) is the vector
of indicator functions, i.e. the jth element of iA(z) is one if
j ∈ A and zero otherwise.

Requirement: if z ∼ pz(·), then z + t iA(z) also follows pz(·).
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Example: General Conditional Sampling

Suppose that the observations yt are i.i.d. from a multivariate
t distribution (see the table of distributions):

p( yi︸︷︷︸
p×1

| µ︸︷︷︸
p×1

, Σ︸︷︷︸
p×p

) = tν(µ,Σ ), i = 1, 2, . . . , N

where ν ≡ (known) degrees of freedom. The table of
distributions yields:

tν(µ,Σ ) = const·|Σ |−1/2·
[
1+

1
ν
·(yi−µ)TΣ−1(yi−µ)T

]−(ν+p)/2

which does not look friendly at all! Yet, this model can handle
outliers well, because the multivariate t distribution can have
heavy tails. So, it would be nice if we could find ML estimates
of µ and Σ for the above model. These ML estimates cannot
be found in a closed form.

Fact: if a p × 1 vector yi follows a tν(µ,Σ ), then we can
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introduce missing data u so that

p(yi |ui;µ,Σ ) = N (µ,Σ/ui)

=
1√

|2πΣ/ui|
· exp

[
− 1

2 ui · d(yi,µ;Σ )︸ ︷︷ ︸
(yi−µ)T Σ−1(yi−µ)

]

=
1√
|2πΣ |

· up/2
i · exp

[
− 1

2 ui · d(yi,µ;Σ )
]

p(ui) = Gamma(ν/2, ν/2) = χ2
ν/ν

= const︸ ︷︷ ︸
indep. of ui

·uν/2−1
i · exp(−ν/2 · ui).

Assume that we wish to estimate µ and Σ and let us assign the
standard Jeffreys’ noninformative prior for these parameters:

π(µ,Σ ) ∝ |Σ |−
p+1
2 .

Define

y =


y1

y2
...

yN

 , u =


u1

u2
...

uN

 .
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Now

p(µ,Σ ,u |y) ∝
( N∏

i=1

u
(p+ν)/2−1
i

)
· exp

(
− ν/2 ·

N∑
i=1

ui

)

· exp
[
− 1

2

N∑
i=1

ui · d(yi,µ;Σ )
]
· |Σ |−

N+p+1
2 .

We can use Gibbs to sample from the above distribution. For
this purpose, we need the following full conditionals:

(a) Conditional on u and µ, the posterior pdf of Σ is an
inverse-Wishart pdf:

p(Σ |u,µ,y) ∝ |Σ |−
N+p+1

2

· exp
{
− 1

2 tr
[ N∑

i=1

ui(yi − µ)(yi − µ)TΣ−1
]}

= Inv-WishartN
({∑N

i=1 ui (yi − µ)(yi − µ)T
}−1

)
see your distribution table.

• Conditional on u and Σ , the posterior pdf of µ is a Gaussian
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pdf:

p(µ |u,Σ ,y) = N
(∑N

i=1 ui yi∑N
i=1 ui︸ ︷︷ ︸

4
= by(u)

,
Σ∑N

i=1 ui

)

• Conditional on µ and Σ (as well as y, of course), ui are
mutually independent following

p(ui |µ,Σ ,y) ∝ u
(p+ν)/2−1
i · exp

[
− ν + d(yi,µ;Σ )

2
· ui

]
= Gamma

(p + ν

2
,
ν + d(yi,µ;Σ )

2

)
see your distribution table.

Gibbs Sampler for Inference on Mean Vector and
Covariance Matrix of a Multivariate t Distribution

Can we apply grouping and collapsing ideas here? Yes, we can
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marginalize µ as follows:

p(Σ ,u |y) =
p(µ,Σ ,u |y)
p(µ |Σ ,u,y)

∝︸︷︷︸
keep all the terms
containing µ,Σ ,u

( N∏
i=1

u
(p+ν)/2−1
i

)
· exp

(
− ν/2 ·

N∑
i=1

ui

)

· exp
[
− 1

2

N∑
i=1

ui · (yi − µ)TΣ−1(yi − µ)
]

·|Σ |−
N+p+1

2 · |Σ/(
N∑

i=1

ui)|1/2

· exp
{

1
2 · (

N∑
j=1

uj) · [µ− ŷ(u)]TΣ−1[µ− ŷ(u)]
}

=︸︷︷︸
choose µ = ŷ(u)

( N∏
i=1

u
(p+ν)/2−1
i

)
· exp

(
− ν/2 ·

N∑
i=1

ui

)

· exp
{
− 1

2

N∑
i=1

ui · [yi − ŷ(u)]TΣ−1[yi − ŷ(u)]
}

·|Σ |−
N+p+1

2 · |Σ/(
N∑

i=1

ui)|1/2

EE 527, Detection and Estimation Theory, # 4c 68



implying that

p(Σ |u,y)

= Inv-WishartN−1

({∑N
i=1 ui [yi − ŷ(u)] [yi − ŷ(u)]T

}−1
)
.

Therefore, we can sample a Σ from p(Σ |u,y) (with µ
integrated out) rather than from the full conditional pdf in
(a) and (slightly collapsed) Gibbs sampler consists of cycling
between the following steps:

• Draw a Σ (t+1) from p(Σ |u(t),y)

= Inv-WishartN−1

({∑N
i=1 u

(t)
i [yi − ŷ(u(t))] [yi − ŷ(u(t))]T

}−1
)
;

• Draw a µ(t+1) from p(µ |Σ (t+1),u(t),y)
= N

(
ŷ(u(t)),Σ (t+1)

/
(
∑N

i=1 u
(t)
i )
)
.

Together, the above two sampling steps yield a
“grouped sample” (Σ (t+1),µ(t+1)) from p(µ,Σ |u(t),y).

• Draw u
(t+1)
i , i = 1, 2, . . . , N i.i.d. from p(ui |Σ (t+1),µ(t+1),y)

= Gamma
(

p+ν
2 , ν+d(yi,µ

(t+1);Σ (t+1))
2

)
, making u(t+1) =

[u(t+1)
1 , u

(t+1)
2 , . . . , u

(t+1)
N ]T .

Note: The samples Σ (t) and u(t) are tightly coupled — if

the starting values of u
(t)
i are large, the resulting sample of
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Σ tends to be large and vice versa. Recall that Parameter
eXpansion helped solving this problem when we applied it to
the EM iteration. Can we make a PX conditional-sampling
move that will make an analogous improvement to the above
Gibbs sampler?

Let us try this move:

(Σ ,u) → (Σ/α, u/α)

where, according to the above theorem:

p(α |Σ ,µ,u,y) ∝ p(µ,Σ/α, u/α |y) · α−
p(p+1)

2 −N · α−1

∝
(1
α

)N(p+ν)/2−N

· exp
(
− ν

2α
·

N∑
i=1

ui

)
·α

N+p+1
2 p · α−

p(p+1)
2 −N · α−1

= α−
Nν
2 −1 · exp

(
− ν

2α
·

N∑
i=1

ui

)
= Inv-χ2

(
Nν, 1

N

∑N
i=1 ui

)
=

ν ·
∑N

i=1 ui

X

where X is a χ2
Nν random variable.
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Parallel Tempering

• This is a fancy M-H algorithm.

• As the name suggests, it consists of running multiple M-H
chains in parallel.

Motivation: Random-walk Metropolis algorithm makes moves
that are very “local” and can therefore fail if our posterior pdf
has isolated islands of probability. For example, consider

p(θ1, θ2) ∝ e−
1
2 ( x2

0.25+
y2

2 ) + 2 e−
1
2 (

(x−5)2

0.25 +
(y−5)2

2 ).

Here is the behavior of the random-walk Metropolis algorithm
in this case:

• Suppose we wish to obtain samples from the target density
p(θ), θ ∈ RI d.
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• Let us adopt a statistical-mechanics representation of p(θ1):

p(θ) ∝ exp[−h(θ)/1]

and define a family of pdfs:

pi(θi) ∝ exp
[
− h(θi)︸ ︷︷ ︸

energy function

/ti

]
, ti > 0.

• In general, we may be interested in sampling from
pi(θi) assuming that pi(θi) is a valid pdf, i.e. that∫

exp[−h(θi)/ti] dθ is finite.

• Note that h(u) ≤ h(v) ⇐⇒ pi(u) ≥ pi(v). Therefore, low-
energy values correspond to “good” or “high-probability”
samples.

• Consider a temperature ladder (just a decreasing sequence
of positive numbers):

t1 > t2 > . . . > tN > 0

where tN = 1.

• Let us extend the sample space:

ϑ
4
= [θT

1 , . . . ,θT
i , . . . ,θT

N ]T ∈ RI Nd.
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• Terminology:

− population or state of the chain:

(θ1, t1; . . . ;θi, ti; . . .θN , tN).

− ith chromosome: θi.

• Modified target density:

p(ϑ) ∝
N∏

i=1

pi(θi).

Note that
pN(·) = p(·).
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Parallel Tempering: Algorithm

(P)arallel (T)empering consists of two types of moves:

• M-H update (local move, mutation move)

− Apply M-H updates to individual chains at different
temperature levels (i.e. to the chromosomes).

• Exchange update (global move, random-exchange
move)

− Propose to swap the states of the chains at two
neighboring temperature levels (i.e. two neighboring
chromosomes).
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Mutation Moves

• Choose i ∈ {1, 2, . . . , N} using some pmf qmutation(i |ϑ).

• In the case of a simple random-walk Metropolis sampler, use

(θi)? = θi + εi

where εi is suitably chosen from a symmetric zero-mean
proposal distribution Ji(· |θi), i = 1, 2, . . . , N ; for example,
a popular choice that we mentioned earlier is

Ji(· |θi) = N
(
θi, Vi︸︷︷︸

tuning parameter

)
.

(Here, One can also apply block- or coordinate-wise Gibbs,
a slice sampler, or use a general M-H step on θi.)

Define

ϑ? = (θ1,θ2, . . . , (θi)?, . . . ,θN).

Accept ϑ? with probability min{1, r}, where

r =
pi

(
(θi)?

)
qmutation(i |ϑ?)

pi(θi) qmutation(i |ϑ)
.
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Proof.

r =
p
(
ϑ?

)
J(ϑ |ϑ?)

p(ϑ) J(ϑ? |ϑ)

=
[
∏N

j=1,j 6=i pj(θj)] · pi

(
(θi)?

)
· qmutation(i |ϑ?) · Ji

(
θi | (θi)?

)
[
∏N

j=1,j 6=i pj(θj)] · pi(θi) · qmutation(i |ϑ) · Ji

(
(θi)? |θi

)
=

pi

(
(θi)?

)
qmutation(i |ϑ?)

pi(θi) qmutation(i |ϑ)
.

Here, the Ji

(
· | ·

)
terms cancel out because we have employed

a Metropolis sampler. In general, they may not cancel out. 2

Comments:

• At higher temperature levels ti, mutation moves are easily
accepted because the distribution pi(·) is “flat” and thus
“hotter” chains travel around the sample space a lot.

• At lower temperature levels ti, mutation moves are rarely
accepted because the distribution pi(·) is very spiky and
hence “colder” chains tend to get stuck around a mode.

In other words, at lower temperatures, mutation does
“local” exploration and, since the lowest temperature is
the temperature of interest, mutations only do not help =⇒
we need to consider “mixing” between different chains.
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• The “sticking” nature of the mutation moves at lower
temperature levels is not necessarily bad — it fosters “local”
exploration.
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Random-exchange Moves

• Choose i ∈ {1, 2, . . . , N} using qre(i |ϑ) = 1
N and select

j 6= i such that

qre(j = 2 | i = 1,ϑ) = 1, qre(j = N − 1 | i = N,ϑ) = 1

and, for i = 2, 3, . . . , N − 1,

qre(j = i± 1 | i,ϑ) = 1
2.

(This lengthy description simply describes choosing two
neighboring chains.)

• Propose to exchange θi and θj where i and j are neighboring
values. Define

ϑ? = (θ1,θ2, . . . , θj︸︷︷︸
ith place

, θi︸︷︷︸
jth place

, . . . , . . . ,θN).
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Accept ϑ? with probability min{1, r}, where

r =
pi

(
θj

)
pj

(
θi

)
pi

(
θi

)
pj

(
θj

)
=

exp[−h(θj)/ti] · exp[−h(θi)/tj]
exp[−h(θi)/ti] · exp[−h(θj)/tj]

= exp{[h(θj)− h(θi)] · (1/tj − 1/ti)}.

Proof.

r =
p
(
ϑ?

)
J(ϑ |ϑ?)

p(ϑ) J(ϑ? |ϑ)

=
p1(θ1) · · · pi(θj)pj(θi) · · · pN(θN)
p1(θ1) · · · pi(θi)pj(θj) · · · pN(θN)

=
pi

(
θj

)
pj

(
θi

)
pi

(
θi

)
pj

(
θj

).
2

Comments:

• If i > j and h(θj) ≤ h(θi), then

r > 1

because 1/tj < 1/ti. Therefore, the exchange-move is
always accepted in this case.
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• In words, “good” (low-energy) samples are brought down
the ladder and “bad” (high-energy) samples are brought up
the ladder. This move probabilistically transports “good”
samples down and “bad” samples up the ladder.

• This move can cause jumps between two widely separated
modes, thus random exchange has a “global” nature.
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Parallel Tempering Algorithm

Start from values θ
(0)
i within the support of p(θ), for i =

1, 2, . . . , N .

Choose a temperature ladder {ti, i = 1, 2, ..., N}.

Choose a moves-mixture probability q, q ∈ (0, 1).

Here is one iteration of the parallel-tempering algorithm:

(i) With probability q, apply the mutation move N times on
the population;

(ii) With probability 1 − q, apply the random-exchange move
N times on the population.

Thus, we get draws ϑ(0) → ϑ(1) → ϑ(2) → · · · → ϑ(t) → · · ·

Upon convergence, we look at θ
(t)
N , t = t0+1, t0+2, . . . , t0+T

where t0 defines the burn-in period.
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