
MONTE CARLO AND MARKOV CHAIN
MONTE CARLO METHODS

History: Monte Carlo (MC) and Markov Chain Monte Carlo
(MCMC) have been around for a long time. Some (very) early
uses of MC ideas:

• Conte de Buffon (1777) dropped a needle of length L onto
a grid of parallel lines spaced d > L apart to estimate
P [needle intersects a line].

• Laplace (1786) used Buffon’s needle to evaluate π.

• Gosset (Student, 1908) used random sampling to determine
the distribution of the sample correlation coefficient.

• von Neumann, Fermi, Ulam, Metropolis (1940s) used games
of chance (hence MC) to study models of atomic collisions
at Los Alamos during WW II.

We are concerned with the use of MC and, in particular, MCMC
methods to solve estimation and detection problems.

As discussed in the introduction to MC methods (handout #
4), many estimation and detection problems require evaluation
of integrals.
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Monte Carlo Integration

MC Integration is essentially numerical integration and thus
may be thought of as estimation — we will discuss MC
estimators that estimate integrals.

Although MC integration is most useful when dealing with
high-dimensional problems, the basic ideas are easiest to grasp
by looking at 1-D problems first.

Suppose we wish to evaluate

G =
∫

Ω

g(x) p(x) dx

where p(·) is a density, i.e. p(x) ≥ 0 for x ∈ Ω and
∫
Ω

p(x) dx =
1. Any integral can be written in this form if we can transform
their limits of integration to Ω = (0, 1) — then choose p(·) to
be uniform(0, 1).

The basic MC estimate of G is obtained as follows:

1. Draw i.i.d. samples x1, x2, . . . , xN from p(·) and

2. Estimate G as

ĜN =
1
N

N∑
i=1

g(xi).
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Clearly, ĜN will be such that

E [ĜN ] = G and ĜN
p→ G

which follows by applying the law of large numbers (LLN).

Comments:

• When we get to MCMC, we will do essentially the same
thing except that independence will not hold for the samples
x1, x2, . . . , xN . We then need to rely on ergodic theorems
rather than LLN.

• ĜN has rate of convergence N−1/2 which is

(i) slow (quadrature may have ∼ N−4 convergence)
(ii) more efficient than quadrature or finite-difference

methods when the dimensionality of integrals is large
(> 6–8)

Define

σ2 =
∫

g2(x) p(x) dx−
[ ∫

g(x) p(x) dx
]2

︸ ︷︷ ︸
var(G(Xi))

.

The overall efficiency of MC calculation is proportional to t σ2

where t is the time required to sample x from p(x).
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Bias and Variance in MC Estimators

Assume

ĜN =
1
N

N∑
i=1

g(xi).

for

G =
∫

Ω

g(x) p(x) dx

where xi ∼ i.i.d. with pdf p(x). As before

E [ĜN ] = G and ĜN
p→ G.

Also

E [(ĜN −G)2] = E [(ĜN − E [ĜN ])2] + (E [ĜN ]−G)2

which is just MSE = variance + bias2 (recall handout # 1).
As we know from the estimation theory, it might be possible to
find an estimator with smaller MSE than ĜN at the expense of
being biased.

Example. Estimate the mean of uniform(0, 1) using MC:

G =
∫ 1

0

x dx, Ĝ
(1)
N =

1
N

∑
i

xi
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for xi sampled from uniform(0, 1). Consider

Ĝ
(2)
N = 1

2 max{x1, x2, . . . , xN}

for xi sampled from uniform(0, 1).

E [Ĝ(1)
N ] = G whereas E [Ĝ(2)

N ] =
N

N + 1
G.

But

MSE(Ĝ(1)
N ) = var(Ĝ(1)

N ) =
G

6N
(order N−1)

MSE(Ĝ(2)
N ) =

2G2

(N + 1)(N + 2)
(order N−2).

Comment:

• Of course, we may be able to get a better (and more

complicated) unbiased estimator of G than Ĝ
(1)
N . Yet, the

biased estimator Ĝ
(2)
N that performs well is really simple.

We often arrange for MC estimators to be unbiased, but this is
not a necessary consequence of MC methodology.

Example. Formulate an MC estimator which samples from
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uniform(0, 1) for the following integral:

G =

∫ 1

0
g1(x) dx∫ 1

0
g2(x) dx

.

An estimate might be

ĜN =
∑N

i=1 g1(xi)∑N
i=1 g2(xi)

where x1, x2, . . . , xN ∼ i.i.d. uniform(0, 1). Here, ĜN will be

biased for G although it will be consistent with ĜN
p→ G.

If ĜN is unbiased, we wish to reduce its variance (which is
equal to the MSE in this case).

To implement MC methods we

1. must be able to generate from p(x) (or from a suitable
alternative),

2. must be able to do so in reasonable time (i.e. small t),

3. need small σ2.

Monte Carlo addresses problem 3.
Markov Chain addresses problems 1 and 2.
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MC Variance Reduction: Importance Sampling

We have an integral

G =
∫

g(x) p(x) dx

where x is p-dimensional. p(x) may not be the best distribution
to sample from. Certainly, p(x) is not the only distribution we
could sample from: For any p̃(x) > 0 over the same support
as p(x), satisfying

∫
p̃(x) dx = 1:

G =
∫

g(x) p(x) dx =
∫

g(x) p(x)
p̃(x)

p̃(x) dx

as long as
g(x) p(x)

p̃(x)
< ∞

up to a countable set and the original integral exists. Let Ĝep,N

be the MC estimator of G based on sampling from p̃:

Ĝep,N =
1
N

∑
i

g(xi)p(xi)
p̃(xi)

(1)

where x1,x2, . . . ,xN ∼ i.i.d. p̃(x). Clearly,

E [Ĝep,N ] = E [ĜN ] = G
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for any legitimate p̃ and

var(Ĝep,N) =
1
N

∫ [g(x)p(x)
p̃(x)

]2

p̃(x) dx− G2

N
.

The idea is to pick p̃ to minimize this variance, subject to the
constraint that p̃ is a density.

Suppose that we pick

p̃(x) ∝ |g(x)| p(x)

i.e.

p̃(x) =
1
C
|g(x)| f(x) where C =

∫
|g(x)| p(x) dx.

This would give

var(Ĝep,N) =
1
N

∫
C |g(x)| f(x) dx− G2

N
=

1
N

(C2 −G2).

Note that
if g(x) > 0 for all x in the support of p, then

C =
∫

g(x) p(x) dx = G
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and if g(x) < 0 for all x in the support of p, then

C = −
∫

g(x) p(x) dx = −G.

In both cases var(Ĝep,N) = 0!

However, if we could compute
∫
|g(x)| p(x) dx, we would

already be done and would not use MC. Nevertheless, we can
draw some conclusions from the above exercise:

1. There may exist an importance pdf p̃(x) that gives smaller
variance than p(x) (of the corresponding estimate of G in
(1) ).

2. Good p̃(x) are those that match the behavior of g(x) p(x).
This is particularly true near the maximum of the integrand
g(x) p(x).

The distribution p̃(x) we actually sample from is usually called
the importance function or importance density.

How can we actually find useful importance densities?

Example 1: Find an MC estimator of

G =
∫ 1

0

(1− x2)1/2 dx.
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Obviously, we could draw i.i.d. samples x1, x2, . . . , xN from
uniform(0, 1) and use

ĜN =
1
N

N∑
i=1

(1− x2
i )

1/2.

It turns out that in this case

var(ĜN) =
0.050

N
.

Now, consider finding a good importance density. Observe
that (1− x2)1/2 has a maximum at x = 0 on [0, 1]. To find a
function that looks like (1−x2)1/2 near x = 0, we could expand
(1− x2)1/2 in a Taylor series around zero (i.e. the maximum).

In this example, let g(x) = (1− x2)1/2 and p(x) = 1
=⇒ g(x)p(x) = g(x) and

g(0) = 1, g′(0) = 0, g′′(0) = −1

implying that

g(x) ≈ 1− 1
2 x2,

∫ 1

0

(1− 1
2 x2) dx = 1− 1/6 = 5/6.

So, we could form

p̃(x) =
6
5
· (1− 1

2x
2), 0 < x < 1.

EE 527, Detection and Estimation Theory, # 4b 10



If we sample x1, x2, . . . , xN i.i.d. from this p̃(·) and use this
MC estimator:

Ĝep,N =
1
N

N∑
i=1

5
6
· (1− x2

i )
1/2

1− 1
2 x2

i

it turns out that var(Ĝep,N) = 0.011/N , about 1/5 of var(ĜN).

In general, this is not a great enough reduction to make finding
p̃(·) worth the effort. But, suppose now that we generalize
1− 1

2x
2 to 1− βx2 so that

∫ 1

0

(1−βx2) dx = 1−1
3 β =⇒ p̃(x) =

1− βx2

1− β/3
, 0 < x < 1.

We now look for β that minimizes the variance of

(1− x2)1/2(1− β/3)
1− βx2

where x is drawn from p̃(x) = (1−βx2)/(1−β/3), 0 < x < 1.
It turns out that β = 0.74 minimizes this variance and the end
result is

var(Ĝep,N) =
0.0029

N
which is a significant (by an order of magnitude) improvement

compared with var(ĜN).
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Example 2: Estimate P [2 < X] for X ∼ Cauchy:

G =
∫ ∞

2

[π(1 + x2)]−1dx.

Note that, for 2 < x, 1/(1 + x2) looks much like 1/x2 and∫ ∞

2

1
x2

dx = 1
2.

Then, we might try

p̃(x) =
2
x2

, 2 < x

and estimate G using

Ĝep,N =
1
N

N∑
i=1

x2
i

2π(1 + x2
i )

where x1, x2, . . . , xN are i.i.d. p̃(·). Note that for X following
p̃(x) = 2

x2, 2 < x, we have

Y =
2
X
∼ uniform(0, 1)

=⇒ we could just sample y1, y2, . . . , yN from uniform(0, 1) and
take

xi =
2
yi

, i = 1, 2, . . . , N.
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In this example, variance reduction was not our major problem
— we focused on finding a density that is easy to sample from.

Example 3: Find an MC estimator of

G =
∫ 1

0

x−1/2(1− x)−1/2 dx.

Note that the integrand is the kernel of a beta density with
parameters 1/2 and 1/2, see the table of distributions handed
out in class. The integrand has singularities at the endpoints
and a ”standard” MC estimator based on sampling from
uniform(0, 1) will have infinite variance!

Define

g(x) =
1

x1/2 (1− x)1/2

and observe that it has singularities at x = 0 and x = 1. Note
that

g(x) ≈
{

1/x1/2 for x near 0
1/(1− x)1/2 for x near 1

and choose

p̃(x) ∝ 1
x1/2

+
1

(1− x)1/2

which is the sum of the approximating functions near the
singularities. Now∫ 1

0

[ 1
x1/2

+
1

(1− x)1/2

]
dx = 4 =⇒ p̃(x) =

1
4x1/2

+
1

4(1− x)1/2
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yielding

Ĝep,N =
1
N

N∑
i=1

4

x
1/2
i + (1− xi)1/2

.

All terms in the above expression are bounded by 4 so var(Ĝep,N)
exists!

The above three examples illustrate importance sampling for

• variance reduction (Example 1),

• finding a density to sample from (Example 2), and

• producing bounded g(x)p(x)/p̃(x) even if g(x)p(x) is not
(Example 3).
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Summary of Importance Sampling

We wish to estimate

G =
∫

g(x) p(x) dx.

Suppose that we have an “importance” density p̃(x) such that
it approximates |g(x)| p(x) well, the support of p̃(x) covers
that of p(x), and it is easy to sample from p̃(x). Then, the
observation that

G =
∫

g(x) p(x) dx =
∫

g(x) p(x)
p̃(x)

p̃(x) dx

suggests the following algorithm:

1) Draw

x1,x2, . . . ,xN
i.i.d.∼ p̃(x)

where p̃(x) ≡ the importance distribution.

2) Compute the importance weights

φn =
p(xn)
p̃(xn)

, n = 1, 2, . . . , N.
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3) Approximate G by either of the following estimators:

ĜWE =
∑N

n=1 g(xn)φn∑N
n=1 φn

(weighted average)

or

Ĝ =
N∑

n=1

g(xn)φn (simple average, discussed earlier).

Note that Ĝ is an unbiased estimator of G whereas ĜWE is
asympotitically consistent (not necessarily unbiased).

Why is ĜWE asympotitically consistent? Because

1
N

N∑
n=1

g(xn) φn
p→ E ep[g(X)φ(X)] = G

and
1
N

N∑
n=1

φn
p→ E ep[φ(X)] = 1.

Although ĜWE is biased, it often has smaller mean-square error
than Ĝ.

Since both numerator and denominator of ĜWE involve φn, we
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only need to know

φ(x) =
p(x)
p̃(x)

up to a proportionality constant! Therefore, ĜWE is great for
Bayesian computations where p(x) is often known only up to
a proportionality constant.
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Sampling–Importance Resampling

Here, we use the importance sampling idea in a slightly different
context.

Suppose we have N draws x1,x2, . . . ,xN from a proposal
distribution p̃(x). Can we convert these samples to samples
from a desired distribution p(x)?

A sampling–importance resampling method for this conversion:

• For each xn, compute

φn =
p(xn)
p̃(x)

wn =
φn∑N

k=1 φk

.

• Draw x? from the discrete distribution over {x1,x2, . . . ,xN}
with weight wn on θn.

If we need multiple samples x?, it is suggested to draw them
without replacement (which, of course, makes sense only if the
number of samples to be drawn is a few times smaller than N).
If the number of samples to be drawn is N , then sample with
replacement. The resampled x? are drawn approximately from
p(x).
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Proof. For simplicity, we focus on univariate x. Then

P{x? ≤ a} =

empirical cdf︷ ︸︸ ︷
N∑

n=1

wn i−∞,a(xn)

=
N−1

∑N
n=1 φn i−∞,a(xn)

N−1
∑N

n=1 φn

−→
E ep[p(X)ep(X) i−∞,a(X)]

E ep[p(X)ep(X)]

=

∫ a

−∞ p(x) dx∫ ∞
−∞ p(x) dx

=
∫ a

−∞
p(x) dx.

2
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MC Variance Reduction: Rao-Blackwellization

Suppose that we have drawn i.i.d. samples x1,x2, . . . ,xN from
p(X) and wish to estimate

I = E p(x)[g(X)].

Recall the straightforward estimator that we mentioned before:

ĜN =
1
N
· [g(x1) + g(x2) + · · · g(xN)]

known as the simple average estimator or histogram estimator.

Suppose that the random vector X can be divided into two
blocks:

X = (X(1),X(2))
where we can compute

E p(x |x(2))[g(X) |X(2) = x(2)]

analytically. Since the law of iterated expectations states

E p(x(2))[E p(x |x(2))[g(X) |X(2) = x(2)]] = E p(x)[g(X)]

or, more informally, after removing the annoying subscripts:

E {E [g(X) |X(2) = x(2)]} = E [g(X)]
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the following Rao-Blackwellized estimator of G

G̃N =
1
N
·
{

E p(x |x(2))[g(x1)] + E p(x |x(2))[g(x2)]

+ · · ·E p(x |x(2))[g(xN)]
}

is unbiased. The above estimator is also known as the mixture
estimator.

Which one of the above two MC estimators is better? Since

var[g(X)] = E {var[g(X)|X(2) = x(2)]}

+var{E [g(X)|X(2) = x(2)]}

we have

var[ĜN ] =
var[g(X)]

N
≥ var{E [g(X) |X(2) = x(2)]}

N
= var[G̃N ].

Of course, the computational effort for obtaining the two
estimates should also be taken into account when deciding
which one is “better.”

A basic rule in MC computation: One should carry out
analytical computations as much as possible!

Comments:
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• We can use the mixture estimator for density estimation as
well: in particular, if we can compute px(1) |x(2)(x(1) |x(2))
analytically, then

px(1)(x(1)) ≈ 1
N
·
[
px(1) |x(2)(x(1) |x(2)

1 ) + px(1) |x(2)(x(1) |x(2)
2 )

+px(1) |x(2)(x(1) |x(2)
N )

]
.

• If the samples x1,x2, . . . ,xN , then it is not so
straightforward to claim superiority of Rao-Blackwellization,
but it has been shown for Gibbs sampler.
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ELEMENTARY TECHNIQUES
FOR RANDOM SAMPLING

Our concern now is “sampling” observations from a given
distribution using observations from another distribution [which
is often uniform(0, 1)].

Inversion

Probability Integral Transform: If x is a continuous random
variable with cdf F , then

F (x) ∼ uniform(0, 1).

To use this idea for sampling from both continuous and discrete
distributions, we extend the probability integral transform as
follows.

Theorem 1. Assume that we wish to sample a random
variable x with cdf F (x). Define

x(u) = min{x̃ : F (x̃) ≥ u}

where u ∼ uniform(0, 1). Then

x(u) ∼ F.
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Proof. Ripley, p. 59. 2

For continuous x and known F−1:

1. Sample ui ∼ i.i.d. uniform(0, 1),

2. xi = F−1(ui).

Then x1, x2, . . . , xN ∼ i.i.d. F .

Example: Sample Poisson(4):

p(x) =
1
x!

4xe−4

So, if we generate u1 = 0.324 from uniform(0, 1), then x1 = 3.

x p(x) cdf F (x) = P [X ≤ x]
0 0.018316 0.018316
1 0.073262 0.091578
2 0.146525 0.238103
3 0.195367 0.433470
· · · · · · · · ·
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Some Useful Inversion Formulas
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Composition of Random Variables

The basic idea: be clever in manipulating functions that
describe distributions. We now present one technique to
illustrate the flavor of this approach. Consider sampling from a
distribution that has the following form:

p(x) =
K∑

i=1

αi gi(x), αi > 0, gi(x) ≥ 0.

Note that we do not require
∫

gi(x) dx = 1.

In our original problem, gi(x) may not be densities. However,
we can write

p(x) =
K∑

i=1

αi

∫
gi(x) dx︸ ︷︷ ︸
βi

· gi(x)∫
gi(x) dx︸ ︷︷ ︸
hi(x)

.

Note that we need
∑

βi = 1, but this should hold if p(x) is a
valid distribution.

We can find functions hi(x) and coefficients βi such that
hi(x) ≥ 0, βi > 0,

∑
βi = 1, and∫

hi(x) dx = 1 (i.e. densities).
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Sampling Scheme:

• We first sample a value m from the set {1, 2, . . . ,K} with
probabilities β1, β2, . . . , βK;

• Then, we take one observation from hm(x).

Repeating the above scheme N times, we end up with
x1, x2, . . . , xN from

h(x) =
∑

i

βi hi(x) (a finite mixture).

Example: We wish to sample from

p(x) = 3
5 + 3

5 x + 3
10 x2, 0 < x < 1.

Clearly, the above p(x) can be written as
∑

i αi gi(x). Over
the interval (0, 1), we know that h1(x) = 1, h2(x) = 2x and
h3(x) = 3x2 are densities; hence

p(x) = ( 3
5︸︷︷︸
β1

· 1︸︷︷︸
h1(x)

)+( 3
10︸︷︷︸
β2

· 2x︸︷︷︸
h2(x)

)+( 1
10︸︷︷︸
β3

·3x2︸︷︷︸
h3(x)

) form
∑

i βi hi(x).

Now, choose k = 1 with probability β1 = 3
5, k = 2 with
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probability β2 = 3
10, and k = 3 with probability β3 = 1

10 or

p(k) =

 6/10, i = 1
3/10, i = 2
1/10, i = 3

.

We can use simple inversion to simulate samples from the
above pmf.

Entire algorithm:

1. Generate ui ∼ uniform(0, 1).

2. • If ui < 6/10 set k = 1;
• If 6/10 ≤ ui < 9/10 set k = 2;
• If 9/10 ≤ ui set k = 3.

3. • If k = 1, set xi = w1 where w1 ∼ uniform(0, 1);
• If k = 2, set xi = max{w1, w2}

where w1, w2 ∼ i.i.d. uniform(0, 1);
• If k = 3, set xi = max{w1, w2, w3}

where w1, w2, w3 ∼ i.i.d. uniform(0, 1).

Note:

P [max{w1, w2} < x] = x2, for x ≥ 0

P [max{w1, w2, w3} < x] = x3, for x ≥ 0.
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Grid Approach

Suppose that we wish to sample from p(x). Here is how we
can (approximately) accomplish that:

• Make a grid of values of x spanning the support of p(x):

x1, x2, . . . , xm.

For convenience, define also x0 = −∞ and xm+1 = +∞.

• Evaluate
p(x1), p(x2), . . . , p(xm).

• Estimate the cdf of this distribution as follows:

0︸︷︷︸
at x0

, 0 + p(x1)︸ ︷︷ ︸
at x1

, 0 + p(x1) + p(x2)︸ ︷︷ ︸
at x2

, . . . ,

m∑
i=1

p(xi)︸ ︷︷ ︸
at xm

, 1︸︷︷︸
at xm+1

.

• Generate a uniform(0, 1) random variable u.

• If u ∈ [
∑l−1

i=1 p(xi),
∑l

i=1 p(xi)], draw xl.
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Comments:

• Nice properties:

− It is easy to implement and understand (no tricks).

• Disadvantages:

− Draws are from an approximation to the true distribution.
− It is not clear how many grid points m shoyld be chosen.

If m is too small this will be a poor approximation. But
how much is “too small”? Clearly, small is “good” in
terms of computational complexity.

− Most values of a continuous random variable can not be
generated by this scheme.

This approach has a larger educational (perhaps debugging?)
than practical value.
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Basic Rejection Sampling

A powerful technique that allows us to sample from a
distribution known only up to a constant. It is due to von
Neumann, see

J. von Neumann, “Various techniques used in connection with
random digits,” in John von Neumann, Collected Works, vol.
V, A.H. Taub (Ed.), New York: Pergamon, 1961, pp. 768–770.

Also known as acceptance-rejection algorithm.

Say we wish to simulate from a distribution with density p(x).
In fact, rejection sampling “works” fine with discrete random
variables and with random vectors (at least in principle —
computational efficiency is important). Here, we focus on
one-dimensional continuos random variables.

To implement this method, we need to find a dominating or
“majorizing” pdf p̃(x) where

• p̃(·) is easy to sample from and

•
p(x) ≤ m p̃(x) = h(x)

for all x and some constant m > 1.
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Rejection Sampling Scheme:

1. Draw a proposal x from p̃(x) and compute the acceptance
ratio:

r(x) =
p(x)

m p̃(x)
=

p(x)
h(x)

≤ 1.

2. Sample u ∼ uniform(0, 1).

• If u ≤ r(x), accept the draw and return x;
• If u > r(x), reject the draw and go back to 1 (and

continue the loop).

Note that this step is equivalent to flipping a biased coin
with success probability r(x).

Then, the sample obtained using the above procedure is a draw
from p(x).
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Proof. Let I be the indicator of whether a sample x is
accepted. Then

P{ I = 1︸ ︷︷ ︸
sample x accepted

} =
∫

P{I = 1|X = x} p̃(x) dx

=
∫

r(x) p̃(x) dx

=
∫

p(x)
m p̃(x)

p̃(x) dx =
1
m

.

Next, we prove the desired result:

p(x|I = 1) =
p(x)

m p̃(x)
·p̃(x)

/
P{I = 1} =

p(x)
m
·m = p(x). (2)

2

The acceptance probability is 1/m and, clearly, m ≥ 1. The
number of trials until accepting a draw is a geometric random
variable, geometric(1/m); hence, the average number of trials
until acceptance is the mean of this geometric random variable,
which is

1
1/m

= m.

One consequence of this result is that m should be made as
small as possible to minimize the number of rejections. The
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optimal m is given by

m = sup
p(x)
p̃(x)

.

Note that we do not need to find the best m, just one that
satisfies

p(x) ≤ m p̃(x) = h(x)
for all x.

Comments:

• The key to rejection sampling is finding p̃(·) with correct
support such that p̃(·) is easy to sample from and
P [accept y] is high.

− Intuitively, p̃(·) needs to have thicker tails than p(·) for
p(x)/p̃(x) to remain bounded for all y. [For example, we
cannot use a Gaussian pdf p̃(·) to generate samples from
a Cauchy pdf p(·). We can do the opposite, however.]

• Rejection sampling is self-monitoring — if the method is not
working efficiently, very few draws will be accepted.

Example 1 (trivial). x ∼ uniform(0, 1):

p(x) =
{

1, 0 < x < 1,
0 otherwise

.
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We could sample by generating two uniform(0, 1) variables x
and u, which we can visualize as

Accept x whenever u ≤ 1. So, the candidate value is x, m = 1,
p(x) = uniform(0, 1), p̃(x) = 1:

r(x) =
p(x)

m p̃(x)
= 1.
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Example:

p(x) =
4

π (1 + x2)
, 0 < x < 1.

Here, we can still use p̃(x) = 1, 0 < x < 1 because it has the
correct support.

Note: m = 1 (say) will not give the correct rejection region.
Recall that we need

p(x) ≤ m p̃(x)

which, in this case, will be satisfied if

m =
4
π
.

We sample uniformly over the region [0, 1]× [0, 4/π] and reject
values in the upper right corner:
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For this example, we can write the general algorithm as follows:

1. Draw x from uniform (0, 1)︸ ︷︷ ︸ep(y)

.

2. Draw u from uniform(0, 1).

3. If

u ≤ r(x) =
p(x)

m p̃(x)
=

1
1 + x2

then return x. Otherwise go back to 1 and continue the
loop.
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Example:

We wish to sample from a half-normal pdf with mean and
variance parameters 0 and 1:

p(x) =
√

2/π · exp(−x2/2) · i[0,∞)(x).

One possibility: draw x ∼ N (0, 1) and reject all x < 0 =⇒
inefficient since 50% of the draws end up being rejected.

Consider using the exponential(1) proposal distribution:

p̃(x) = exp(−x) i[0,∞)(x)

We need to find m such that

p(x) ≤ m p̃(x) ≥ ⇐⇒
√

2/π · exp(−x2/2) ≤ exp(−x).
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Differentiate the log of the above expression and find the
smallest m such that the above inequality is satisfied. As a
result, we obtain x = 1 and the bound

m =

√
2
π
· exp(1

2) ≈ 1.315

which is the optimal m that we can choose in this case, leading
to the acceptance rate of 76%.

To summarize, here is the rejection sampler for this case:

1. Draw x from the exponential(1) pdf and compute the
acceptance ratio:

r(x) =
p(x)

m p̃(x)
= exp[−0.5(x− 1)2].

2. Sample u ∼ uniform(0, 1).

• If u ≤ r(x), accept the draw and return x;
• If u > r(x), reject the draw and go back to 1 (and

continue the loop).

Note that this example is somewhat artificial since we do not
need rejection to sample from a half normal distribution. Half
normal distribution is the distribution of the absolute value of
a standard normal random variable.
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In the previous discussion, it was assumed that p(x) was a
density function. In fact, p(x) only needs to be known up to a
multiplicative constant:

l(x) = b p(x).

Here, b is the multiplicative constant that may be unknown.
This case is particularly common in Bayesian inference where
the posterior density is usually known up to a proportionality
factor:

p(θ|data) ∝ p(data|θ) π(θ)

and the normalizing constant is difficult to calculate exactly.

Rejection sampling approach does not require knowing the
constant b! The original procedure can be modified as follows:

Find m̃ such that

l(x) ≤ m̃ p̃(x) = h(x)

for all x and some positive constant m̃. Then, the rejection
sampling scheme is:

1. Draw a proposal x from p̃(x) and compute the acceptance
ratio:

r(x) =
l(x)

m̃ p̃(x)
=

l(x)
h(x)

≤ 1.
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2. Sample u ∼ uniform(0, 1).

• If u ≤ r(x), accept the proposal and return x;
• If u > r(x), reject the proposal and go back to 1 (and

continue the loop).

Everything is the same as before, except the unnormalized
density l(x) is used instead of the normalized density p(x).

The acceptance probability for this scheme is b/m̃.

A general comment about the choice of p̃(·):

A good choice p̃(x) will normally be “close to” p(x) — we
wish to minimize the separation between the two densities.
Often, a parametric family of candidates p̃(·) is chosen and the
member from the parametric family with the smallest m or m̃
is determined and used.
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A Trick for Finding m or m̃ when Sampling
from a Posterior Distribution

Say we want to sample θs from

p(·)︷ ︸︸ ︷
p(θ|x) ∝

l(·)︷ ︸︸ ︷
π(θ) p(x|θ).

by generating samples from the prior

ep(θ)︷︸︸︷
π(θ) and rejecting some

of them. Hence, our basic rejection algorithm is

1. Generate ϑ from

proposal dist.︷ ︸︸ ︷
π(ϑ) .

2. Generate u from uniform(0, 1).

3. Repeat Steps 1 and 2 until

u ≤ r(ϑ) =
p(x|ϑ) π(ϑ)

m̃ π(ϑ)
=

p(x|ϑ)
m̃

.

4. Return θ = ϑ.

Here, we need to find m̃ such that

p(x|ϑ) π(ϑ) ≤ m̃ π(ϑ) ⇐⇒ p(x|ϑ) ≤ m̃
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for all ϑ. Choose m̃ = maxϑ p(x|ϑ), which is the maximized
likelihood!

This yields the following rejection-sampling scheme:

1. Generate ϑ from π(ϑ).

2. Generate u from uniform(0, 1).

3. Repeat Steps 1 and 2 until

u ≤ p(x|ϑ)
maxϑ p(x|ϑ)

.

4. Return θ = ϑ.

Hence, those ϑ from the prior π(·) that are likely according to
the likelihood are kept in the posterior sample! For example, a
random draw equal to the ML estimate of θ

θ̂ = arg max
θ

p(x|ϑ)

will always be accepted!
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Background: (Univariate) Slice Sampler

Consider now sampling a random variable φ from a nonstandard
p(φ) ∝ h(φ).

(Seemingly Counter-Intuitive!) Idea:

• Invent a convenient bivariate distribution for, say, φ and u,
with marginal pdf for φ specified by h(φ).

• Then, use Gibbs sampling to make

(φ(0), u(0)), (φ(1), u(1)), (φ(2), u(2)), . . . , (φ(T ), u(T )).

Create an auxiliary variable u just for convenience!
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(Univariate) Slice Sampler

“Invent” a joint distribution for φ and u by declaring it to be

uniform on :

p(φ, u) =
{

1
c, 0 < u < h(φ)
0, otherwise

∝ i(0,h(φ))(u).
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With this joint pdf, P [φ ≤ 13] =
∫ 13

−∞
h(φ)

c dφ.

The marginal pdf of φ is indeed specified by h(φ) =⇒
if we figure out how to do Gibbs sampling, we know how to
generate a φ from h(φ).
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Gibbs Sampler is Easy in This Case!

p(u |φ) = uniform
(
0, h(φ)

)
p(φ |u) = uniform on {φ |h(φ) > u}︸ ︷︷ ︸

“slice”

.

Step 1: Given φ(t−1), sample u(t) ∼ uniform
(
0, h(φ(t−1))

)

Step 2: Given u(t), sample φ(t) Uniform from slice(t)
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If we can algebraically solve h(φ) = u(t), our task is easy. What
if not?

Step 2 implementation using the rejection method

When we have band bounds on φ, say φMIN ≤ φ ≤ φMAX

generate i.i.d. values φ from uniform(φMIN, φMAX) until we
produce a φ in the slice [i.e. h(φ) > u(t)], which we then
accept as φ(t).

Note: For multivariate extensions of the slice sampler
(particularly the “shrinkage idea”), see

R.M. Neal, “Slice sampling,” Ann. Statist., vol. 31, pp. 705–
741, June 2003.
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