
LINEAR MODELS

Polynomial Curve Fitting Example. Continuous signal x(t)
is modeled as a polynomial of degree p− 1 in additive noise:

x(t) = θ1 + θ2t + · · ·+ θpt
p−1 + w(t).

Suppose that we are given {x(tn)}N−1
n=0 . Define

x = [x(t0), . . . , x(tN−1)]T

w = [w(t0), . . . , w(tN−1)]T

θ = [θ1, . . . , θp]T

H =


1 t0 · · · tp−1

0

1 t1 · · · tp−1
1

... ... . . . ...

1 tN−1 · · · tp−1
N−1

 (an N × p matrix).

The data model is then

x = Hθ + w

where H is known and θ is the parameter vector to be
estimated.
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Sinusoidal Amplitude and Phase Estimation Estimation:
Measured signal x(t) is modeled as a superposition of p/2
sinusoids (having known frequencies but unknown amplitudes
and phases):

x(t) =
p/2∑
k=1

rk sin(ωkt + φk) + w(t).

This model is linear in rk but nonlinear in φk. However, we
can rewrite it as

x(t) =
p/2∑
k=1

[Ak cos(ωkt) + Bk sin(ωkt)] + w(t).

Given x = [x(t0), . . . , x(tN−1)]T , we get the following model:

x = Hθ + w.
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Linear Models (cont.)

For p/2 = 2 sinusoids:

H =
cos(ω1t0) cos(ω2t0) sin(ω1t0) sin(ω2t0)
cos(ω1t1) cos(ω2t1) sin(ω1t1) sin(ω2t1)

... ... ... ...
cos(ω1tN−1) cos(ω2tN−1) sin(ω1t1) sin(ω2tN−1)


and

θ = [A1, . . . , Ap/2, B1, . . . , Bp/2]T .

Once we compute an estimate θ̂ of θ, r̂k and φ̂k are
obtained using the simple conversion from rectangular to polar
coordinates.

Note: Even if θ̂ is a minimum variance unbiased (MVU)

estimator, {r̂k} and {φ̂k} will only be asymptotically MVU (for
large N), as we will see later.
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General Problem Formulation

Consider the model

x = Hθ +
noise︷︸︸︷
w

where x is a measured N × 1 vector and H is a known
deterministic N × p matrix, with N ≥ p. We wish to estimate
the unknown parameter vector θ.

Assume that w is distributed as w ∼ N (0, σ2I).

Recall the identifiability condition:

p(x;θ1) = p(x;θ2) ⇔ θ1 = θ2

which, in this case, reduces to

Hθ1 = Hθ2 ⇔ θ1 = θ2.

To satisfy this condition, we assume that H has full rank p.
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Minimum Variance Unbiased Estimator for the
Linear Model

Theorem 1. For the model

x = Hθ + w

where w ∼ N (0, σ2I), the MVU estimator of θ is given by

θ̂ = (HTH)−1HTx. (1)

The covariance matrix of θ̂ attains the Cramér-Rao bound
(CRB) for all θ ∈ RI p and is given by

Cbθ = E
[
(θ̂ − θ)(θ̂ − θ)T

]
= σ2 (HTH)−1.

Proof. Verifying the unbiasedness of θ̂ and the
covariance matrix expression cov(θ̂) = E

[
(θ̂ − θ)(θ̂ − θ)T

]
=

σ2 (HTH)−1 proves the theorem.

For the above model,

CRB(θ) = I(θ)−1
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and the Fisher information matrix (FIM) for θ, I(θ), is
computed using the general Gaussian FIM expression in handout
# 2:

[I(θ)]i,k =
1
σ2
· ∂µ(θ)T

∂θi

∂µ(θ)
∂θk

where µ(θ) = Hθ. Now

∂µ(θ)
∂θi

=
∂(Hθ)

∂θi
= ith column ofH

implying that

I(θ) =
1
σ2
·HTH =⇒ CRB(θ) = σ2 (HTH)−1. (2)

2

Comments:

• Since the joint FIM and CRB for [θT , σ2]T are block-diagonal
matrices, θ and σ2 are decoupled =⇒ CRB(θ) is the same
regardless of whether σ2 is known or not. To be more
precise, CRB(θ) in (2) is the CRB for θ assuming that σ2

is known and here is the full CRB for θ and σ2︸ ︷︷ ︸
ρ=

24 θ
σ2

35
for the case
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where both θ and σ2 are unknown:

CRBρ,ρ(θ, σ2) =

 same as (2)︷ ︸︸ ︷
CRBθθ(θ, σ2) 0

0 CRBσ2,σ2(σ2)

 .

Therefore, θ̂ in (1) is the MVU estimator of θ regardless of
whether σ2 is known or not.

• θ̂ in (1) coincides with the least-squares (LS) estimate of θ:

θ̂ = arg min
θ
‖x−Hθ‖2

which can be shown by differentiating ‖x − Hθ‖2 with
respect to θ and setting the result to zero or by completing
the squares. Later in this handout, we will see a geometric
interpretation of the LS approach.
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Minimum Variance Unbiased Estimator for the
Linear Model (cont.)

The solution from the above theorem is numerically not sound
as given. It is better to use a QR factorization, say, briefly
outlined below. Suppose that the N × p matrix H is factored
as

H = QR = [Q1 Q2]
[

R1

0

]
= Q1R1

where Q is orthonormal and R1 is upper triangular p × p
(Matlab: qr). Then

(HTH)−1HT = R−1
1 QT

1 .

Thus, θ̂ can be obtained by solving the triangular system of
equations

R1θ̂ = QT
1 x.

Matlab has the “backslash” command for computing the LS
solution:

θ = H\x;
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Minimum Variance Unbiased Estimator for the
Linear Model, Colored Noise

Suppose that we have colored noise, so that w ∼ N (0, σ2 C),
where C 6= I is known and positive definite.

We can use prewhitening to get back to the old problem (i.e.
the white-noise case). We compute the Cholesky factorization
of C−1:

C−1 = DTD Matlab: D = inv(chol(C))’;

(Any other square-root factorization could be used as well.)

Now, define the transformed measurement model:

D x︸︷︷︸
xtransf

= D H︸ ︷︷ ︸
H transf

θ + D w︸︷︷︸
wtransf

.

Clearly, wtransf ∼ N (0, σ2I) and the problem is reduced to
the white-noise case.
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MVU Estimation, Colored Noise (cont.)

Theorem 2. For colored Gaussian noise with known
covariance C, the MVU estimate of θ is

θ̂ = (HTC−1H)−1HTC−1x.

The covariance matrix of θ̂ attains the CRB and is given by

Cbθ = (HTC−1H)−1.

Note: θ̂ is a weighted LS estimate,

θ̂ = arg min
θ
‖x−Hθ‖2W

= arg min
θ

(x−Hθ)T W (x−Hθ).

The “optimal weight matrix,” W = C−1, prewhitens the
residuals.
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Best Linear Unbiased Estimator

Given the model
x = Hθ + w (3)

where w has zero mean and covariance matrix E [wwT ] = C,
we look for the best linear unbiased estimator (BLUE). Hence,
we restrict our estimator to be

• linear (i.e. of the form θ̂ = ATx) and

• unbiased

and minimize its variance.

Theorem 3. (Gauss-Markov) The BLUE of θ is

θ̂ = (HTC−1H)−1HTC−1x

and its covariance matrix is

Cbθ = (HTC−1H)−1.

The expression for Cbθ holds independently of the distribution
of w — all we impose on w is that it has known mean vector
and covariance matrix, equal to 0 and C (respectively).
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The estimate θ̂ is (statistically) efficient if w is Gaussian (i.e.
it attains the CRB), but it is not efficient in general. For
non-Gaussian measurement models, there might be a better
nonlinear estimate. (Most likely, there exists a better nonlinear
estimate.)

Proof. (of Theorem 3). For simplicity, consider first the case
where θ is scalar. Then, our measurement model is

x[n] = h[n] θ + w[n] ⇐⇒ x = h θ + w.

The candidate linear estimates of θ have the following form:

θ̂ =
N−1∑
n=0

anx[n] = aTx.

First, the bias is computed:

E [θ̂] = aTE [x] = aTh θ.

Thus, θ̂ is unbiased if and only if aTh = 1. Next, compute the
variance of θ̂. We have

θ̂ − θ = aT (h θ + w︸ ︷︷ ︸
x

)− θ = aTw
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where we have used the unbiasedness condition: aTh = 1.
Therefore, the variance is

E [(θ̂ − θ)2] = E [(aTw)2] = E [aTwwTa] = aTCa.

Note: The variance of θ̂ depends only on the second-order
properties of the noise. This result holds for any noise
distribution that has second-order moments.

Thus, the BLUE problem is

min
a

aTCa such that aTh = 1.

Note the equivalence with MVDR beamforming. To read more
about MVDR beamforming, see

H.L. Van Trees, Detection, Estimation and Modulation
Theory, New York: Wiley, 2002, pt. IV.

Lagrange-multiplier formulation:

L(a) = aTCa+λ·(aTh−1) differentiate=⇒ 2 Ca+λ h = 0.

Hence

a = −λ

2
·C−1h

and then

aTh = −λ

2
hTC−1h = 1 ⇒ λ = − 2

hTC−1h
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and optimal a follows: a = (hTC−1h)−1C−1h. Returning to
our estimator, we find the BLUE to be

θ̂ = (hTC−1h)−1hTC−1x.

and its variance is given by

E [(θ̂ − θ)2] = (hTC−1h)−1.

2

Consider the vector case. Linear unbiased estimates of θ:

θ̂ = ATx, where A is independent of x. (4)

Remark: For LS estimate θ̂LS, AT = (HTH)−1HT .

θ = E [θ̂] = E [ATx] = E [AT (Hθ + w)] = ATHθ.

⇒ ATH = I.

Remark: For BLUE θ̂BLUE, AT
BLUE = (HTC−1H)−1HTC−1.

Since AT
BLUEH = I ⇒ E [θ̂BLUE] = θ.

cov(θ̂) = E {[AT (Hθ + w︸ ︷︷ ︸
x

)−θ][AT (Hθ+w)−θ]T} = ATCA.
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and

cov(θ̂BLUE) = (HTC−1H)−1HTC−1CC−1H(HTC−1H)−1

= (HTC−1H)−1.

To prove that θ̂BLUE has the smallest variance [within the family

of linear unbiased estimators θ̂ in (4)], we show that

cov(θ̂BLUE) ≤ cov(θ̂)

as follows:

cov(θ̂)− cov(θ̂BLUE) = ATCA− (HTC−1H)−1

ATH=I= ATCA−ATH(HTC−1H)−1HTA

= AT [C −H(HTC−1H)−1HT ]A

=AT [C−H(HTC−1H)−1HT ]C−1[C−H(HTC−1H)−1HT ]A

which is always positive semidefinite.
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Examples

Example 4.4 in Kay-I. Estimate DC level in colored noise:

x[n] = A + w[n]

for n = 0, 1, . . . , N −1, where w = [w[0], w[1], . . . , w[N −1]]T

is the colored noise with zero mean and covariance matrix
E [wwT ] = C. Hence, H = h = 1 = [1, 1, . . . , 1]T in (3).
The BLUE is

Â = (hTC−1h)−1hTC−1x =
1TC−1x

1TC−11

and its variance is

var(Â) =
1

1TC−11
.

Consider the Cholesky factorization (C)−1 = DTD; then the
BLUE of A becomes

Â =
1TDTDx

1TDTD1
=

(D1)T

xtransf︷︸︸︷
Dx

1TDTD1
=

N−1∑
n=0

dnxtransf[n]

where
dn = [D1]n/1TDTD1.
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Examples (cont.)

Sometimes, BLUE is completely wrong. For example, x[n] =
w[n], n = 1, 2, . . . , N , white Gaussian noise with variance σ2.

The MVU estimator is σ̂2 = (1/N) ·
∑N−1

n=0 x2[n]. On the other
hand,

σ̂2
BLUE =

N∑
n=1

an x[n].

For an estimator σ̂2 to be unbiased, we need E [σ̂2] = σ2, but

E [σ̂2
BLUE] =

N∑
n=1

anE (x[n]) = 0!

It is impossible to find ans to make σ̂2
BLUE unbiased.

Note: Although the BLUE is not suitable for this problem,
utilizing the transformed data y[n] = x2[n] would produce a
viable estimator.
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General MVU Estimation

What is the MVU estimate in general?

Theorem 4. (Rao-Blackwell) If θ̃(x) is any unbiased
estimator and T (x) is a sufficient statistic, then

θ̂(x) = E p(x |T (x))

[
θ̃(X) |T (X) = T (x)

]
(5)

is no worse than θ̃(x) (in terms of MSE).

Problem: Computing E [θ̃(X) |T (X) = T (x)] may be
difficult! Recall that this type of expectation occurs when
proving sufficiency, but luckily, in the case of sufficiency, our
efforts were greatly simplified by the factorization theorem.

Definition. T (x) is complete sufficient statistic if only one

estimator θ̂ = g(T (x)) is unbiased.

Corollary: If T (x) is a complete sufficient statistic, then the

unique unbiased estimate θ̂ = g(T (x)) is the MVU estimate.

Comments:

• Conditioning always decreases the variance (does not
increase, to be more precise).
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• To get a realizable estimator, we need to condition on the
sufficient statistics. The definition of sufficient statistic
[denoted by T (x)] implies that conditioning on it leads to a
distribution that is not a function of the unknown parameters
θ. Hence, (5) is a statistic, i.e. realizable.
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Example: Suppose that x[n], n = 1, 2, . . . , N are independent,
identically distributed (i.i.d.) N (A, σ2) with θ = [A, σ2]T .
Then,

p(x;θ) =
1

(2πσ2)n/2
exp

[
− 1

2σ2

N∑
n=1

(x[n]−A)2
]

=
1

(2πσ2)n/2
· exp

{
− 1

2σ2

[
(N − 1) · 1

N − 1
·

N∑
n=1

(x[n]− x̄)2

+N(x̄−A)2
]}

.

Therefore, the jointly sufficient statistics are

T1(x) = x̄, T2(x) = σ̂2 =
1
N

N∑
n=1

(x[n]− x̄)2.

where x̄ = 1
N

∑N
n=1 x[n]. It can be shown that Â = x̄ and

σ̂2 = 1
N−1

∑N
n=1(x[n]− x̄)2 are the only unbiased functions of

T (x) = [T1(x), T2(x)]T . Hence, the corollary at the previous
page implies that they are the MVU estimates (although, in this
case, the MVU estimates are not efficient and, therefore, could
not have been found using the efficiency argument). Indeed,

for θ̂ = [Â, σ̂2]T ,

cov(θ̂) = Cbθ =
[

σ2/N 0
0 2σ4/(N − 1)

]
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but, recall the CRB for this case (e.g. p. 24 of handout # 2):

CRB(θ) =
[

σ2/N 0
0 2σ4/N

]
.
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MAXIMUM LIKELIHOOD (ML) ESTIMATION

θ̂ = arg max
θ

p(x; θ).

The pdf p(x; θ), viewed as function of θ, is the likelihood
function.

Comments on the likelihood function: For given θ and
discrete case, p(x; θ) is the probability of observing the point
x. In the continuous case, it is approximately proportional to
probability of observing a point in a small rectangle around
x. However, when we think of p(x; θ) as a function of θ, it
gives, for a given observed x, the “likelihood” or “plausibility”
of various θ.

ML estimate ≡ value of the parameter θ that “makes the
probability of the data as great as it can be under the assumed
model.”
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ML Estimation (cont.)

Theorem 5. Assume that certain regularity conditions hold
and let θ̂ be the ML estimate. Then, as N →∞,

θ̂ → θ0 (with probability 1) (consistency) (6)
√

N (θ̂ − θ0)
d→ N

(
0, N I−1(θ0)

)
(asymptotic efficiency) (7)

where θ0 is the true value of the parameter and I(θ0) is the
Fisher information [and I−1(θ0) the CRB]. Moreover, if an
efficient (in finite samples) estimate exists, it is given by the
ML estimate.

Proof. See e.g. Rao, Chapter 5f.2 at pp. 364–366 for the case
of independent observations. 2

Note: At lower signal-to-noise ratios (SNRs), a threshold
effect occurs — outliers give rise to increased variance (more
than predicted by the CRB). This behavior is characteristic of
practically all nonlinear estimators.

Example: x[n] i.i.d. N (θ, σ2), n = 0, 1, . . . , N − 1, for σ2
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known. Maximizing p(x; θ) is equivalent to

max
θ

log p(x; θ) = const− 1
2σ2

N−1∑
n=0

(x[n]− θ)2.

Thus, the ML estimate is the sample mean

θ̂ =
1
N

N−1∑
n=0

x[n] ∼ N (θ0, σ
2/N).

In this example, ML estimator = MVU estimator = BLUE.

Note: When estimation error cannot be made small as N →
∞, the asymptotic pdf in (7) is invalid. For asymptotics to
work, there has to be an averaging effect!

Example 7.7 in Kay-I: Estimation of the DC level in fully
dependent non-Gaussian noise:

x[n] = A + w[n].

We observe x[0], x[1], . . . , x[N − 1] but w[0] = w[1] = · · · =
w[N−1], i.e. all noise samples are the same. Hence, we discard

x[1], x[2], . . . , x[N − 1]. Then, Â = x[0], say. The pdf of Â

remains non-Gaussian as N → ∞. Also, Â is not consistent
since var(Â) = var(x[0]) 9 0 as N →∞.
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ML Estimation: Vector Parameters

Nothing really changes. The ML estimate is

θ̂ = arg max
θ

p(x;θ).

Under appropriate regularity conditions, this estimate is
consistent and

√
N (θ̂ − θ0)

d→ N
(
0, N I−1(θ0)

)
where I(θ0) is the Fisher information matrix now.
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ML Estimation: Properties

Theorem 6. (ML Invariance Principle) The ML estimate
of α = g(θ) where the pdf/pmf p(x;θ) is parametrized by θ,
is given by

α̂ = g(θ̂)

where θ̂ is the ML estimate of θ [obtained by maximizing
p(x;θ) with respect to θ].

Comments:

• For a more precise formulation, see Theorems 7.2 and 7.4 in
Kay-I.

• Invariance is often combined with the delta method which
we introduce later in this handout.

More properties:

• If a given scalar parameter θ has a single sufficient statistic
T (x), say, then the ML estimate of θ must be a function of
T (x). Furthermore, if T (x) is minimal and complete, then
the ML estimate is unique.

• (Connection between ML and MVU estimation) If the
ML estimate is unbiased, then it is MVU.
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Statistical Motivation

ML has a nice intuitive interpretation, but is it justifiable
statistically? Now we try to add to the answer to this question,
focusing on the case of i.i.d. observations.

In Ch. 6.2 of Theory of Point Estimation, Lehmann shows the
following result.

Theorem 7. Suppose that the random observations Xi are
i.i.d. with common pdf/pmf p(xi;θ0) where θ0 is in the interior
of the parameter space. Then, as N →∞

P
{ N∏

i=1

p(Xi;θ0) >

N∏
i=1

p(Xi;θ)
}
→ 1

for any fixed θ 6= θ0.

Comment: This theorem states that, for large number of i.i.d.
samples (i.e. large N), the joint pdf/pmf of X1, X2, . . . , XN at
the true parameter value

N∏
i=1

p(Xi;θ0)

exceeds the joint pdf/pmf of X1, X2, . . . , XN at any other
parameter value (with probability one). Consequently, as the
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number of observations increases, the parameter estimate that
maximizes the joint distribution of the measurements (i.e. the
ML estimate) must become close to the true value.
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Regularity Conditions for I.I.D. Observations

Not one set of regularity conditions applies to all scenarios.

Here are some typical regularity conditions for the i.i.d. case.
Suppose X1, . . . , Xn are i.i.d. with pdf

p(xi;θ), θ =


θ1

θ2
...
θp

 .

Regularity conditions:

(i) p(x;θ) is identifiable for θ and the support of p(xi;θ) is
not a function of θ;

(ii) The true value of the parameter, say θ0, lies in an open
subset of the parameter space Θ;

(iii) For almost all x, the pdf p(x;θ) has continuous derivatives
to order three with respect to all elements of θ and all values
in the open subset of (ii);

(iv) The following are satisfied:

E p(x;θ)

[ ∂

∂θk
log p(X;θ)

]
= 0, k = 1, 2, . . . , p

EE 527, Detection and Estimation Theory, # 3 29



and

Ii,k(θ) = E p(x;θ)

[
∂

∂θi
log p(X;θ) · ∂

∂θk
log p(X;θ)

]
= −E

[
∂2

∂θi ∂θk
log p(X;θ)

]
, i, k = 1, 2, . . . , p.

(v) The FIM I(θ) = [I(θ)]i,k is positive definite;

(vi) Bounding functions mi,k,l(·) exist such that

∣∣∣ ∂3

∂θi ∂θk ∂θl
log p(x;θ)

∣∣∣ ≤ mi,k,l(x)

for all θ in the open subset of (ii), and

E p(x;θ)[mi,k,l(X)] < ∞.

Theorem 8. (≈ same as Theorem 5) If X1, X2, . . . , XN

are i.i.d. with pdf p(xi;θ) such that the conditions (i)–(vi)

hold, then there exists a sequence of solutions {θ̂N} to the
likelihood equations such that

(i) θ̂N is consistent for θ;

(ii)
√

N (θ̂N − θ) is asymptotically Gaussian with mean 0 and
covariance matrix N I−1(θ) = N CRB(θ);
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(iii)
√

N ([θ̂N ]i − θi) is asymptotically Gaussian with mean 0
and variance N [I−1(θ)]i,i, i = 1, 2, . . . , p.

Comments: What we are not given:

(i) uniqueness of θ̂N ;

(ii) existence for all x1, . . . , xN ;

(iii) even if the solution exists and is unique, that we can find
it.
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An Array Processing Example

x[n] = A(φ)s[n] + w[n], n = 0, 1, . . . , N − 1
where θ = [φT , s[0]T , s[1]T , . . . s[N − 1]T ]T is the vector of
unknown parameters and w[n] is complex WGN.

Note:

• x[n] are not i.i.d. (conditions that we stated are not
enough);

• θ grows with N .

It is well known that CRB cannot be attained asymptotically in
this case, see

P. Stoica and A. Nehorai, “MUSIC, maximum likelihood and
Cramér-Rao bound,” IEEE Trans. Acoust., Speech, Signal
Processing, vol. 37, pp. 720-741, May 1989.

What if s[n] are random ∼ Nc(0,Γ)? Then, x[n], n =
0, 1, . . . , N − 1 are i.i.d. with

x[n] ∼ N (0,A(θ)ΓA(θ)H + σ2I).

Here, the number of parameters does not grow. If the regularity
conditions that we stated for the i.i.d. case hold, the CRB will
be attained asymptotically! Also, the CRB for this case will be
different (smaller) than the CRB for deterministic s[n].
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Digression: Delta Method

Theorem 9. (Gauss Approximation Formula, Delta Method)
Assume α = g(θ) has bounded derivatives up to the 2nd order.

Then, if θ̂ is consistent, so is α̂. Moreover, the asymptotic
MSE matrices Cbθ and Cbα are related by

Cbα =
∂g

∂θT
Cbθ ∂gT

∂θ
.

Proof. Follows from Taylor expansion [around the true value
α0 = g(θ0)]

α̂ = g(θ0) +
∂g

∂θT

∣∣∣
θ=θ0

(θ̂ − θ0) + o(‖θ̂ − θ0‖).

2
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Example: Amplitude and Phase Estimation

Assume x[n] = A cos(ω0n + φ) + e[n], n = 0, 1, . . . , N − 1,
where ω0 is known and e[n] is additive white Gaussian noise
(AWGN). We wish to estimate A and φ.

We rewrite this model as a linear model:

x =

 x[0]
. . .

x[N − 1]

 = Hθ + w

where θ = [θ1, θ2]T and

Hi,1 = cos[ω0(i− 1)], i = 1, 2, . . . , N

Hi,2 = sin[ω0(i− 1)], i = 1, 2, . . . , N

(A cos φ,−A sinφ) ↔ (θ1, θ2)

We have

θ̂ = (HTH)−1HTx ∼ N
(
θ0, σ

2 (HTH)−1
)
.

By the ML invariance principle, Â and φ̂ can be found from
θ̂ = [θ̂1, θ̂2]T via rectangular-to-polar coordinate conversion:

(θ̂1, θ̂2) ↔ (Â cos φ̂,−Â sin φ̂).

EE 527, Detection and Estimation Theory, # 3 34



Define α = [A,φ]T = g(θ). Then, the delta method yields

Cbα =
∂g

∂θT
Cbθ ∂gT

∂θ
.
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Example: ML Decoding

For a symmetric channel, the ML decoder is the minimum
Hamming distance decoder.

Proof. Let x and θ be the received and transmitted vectors
from a binary symmetric channel (i.e. the elements of x and
θ are zeros or ones). Note that θ belongs to a finite set of
codewords. We wish to find which θ was transmitted based on
the received x. We have

x = θ + w (mod 2)
4
= θ ⊕w

where w = [w1, . . . , wN ]T and wi are i.i.d. Bernoulli(p). The
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likelihood function is given by

p(x;θ) = P{X = x} = P{θ ⊕ W︸︷︷︸
i.i.d. Bernoulli

= x}

= P{W = x⊕ θ︸ ︷︷ ︸
w=

2666664
w1

w2
...

wN

3777775

}

= p
PN

i=1 wi · (1− p)N−
PN

i=1 wi

=
(

p

1− p

)dH(x,θ)

(1− p)N

where

dH(x,θ) =
N∑

i=1

xi ⊕ θi

is the Hamming distance between x and θ (i.e. the number
of bits that are different between the two vectors). Hence, if
p < 0.5, then

max
x

p(x;θ) ⇐⇒ min
θ

dH(x,θ).

2
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Asymptotic ML for WSS Processes

Consider data x ∼ N (0,C(θ)). To find the ML estimate of
θ, maximize

p(x;θ) =
1

(2π)N/2|C(θ)|1/2
exp

[
− 1

2 · x
TC(θ)−1

x
]

over θ.

If x[n] is WSS, then C(θ) is Töplitz, so, as N → ∞, we can
approximate the log likelihood as:

log p(x; θ) = −N

2
log 2π

−N

2

∫ 1/2

−1/2

(
log Pxx(f ;θ) +

Ix(f)
Pxx(f ;θ)

)
df

where Ix(f) is the periodogram:

Ix(f) =
1
N

∣∣∣ N−1∑
n=0

x[n]e−j2πfn
∣∣∣2

and Pxx(f ; θ) is the PSD of x[n].

This result is based on the Whittle approximation, see e.g.

P. Whittle, “The analysis of multiple stationary time series,” J.
R. Stat. Soc., Ser. B vol. 15, pp. 125–139, 1953.
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Proof. See e.g. Ch. 7.9 in Kay-I. 2

Note: Kay calls the Whittle approximation “asymptotic ML”.

The discrete-frequency version of the above expression is also
useful:

− N

2
log 2π − 1

2

N−1∑
k=0

{
log[Pyy(fk;θ)] +

Ix(fk)
Pyy(fk;θ)

}
(8)

where

fk = k/N, k = 0, 1, . . . , N − 1.

For example, (8) may exist even when the integral form does
not. An example of such a case that we mentioned earlier is the
Doppler PSD (which goes to infinity, causing an integrability
problem), see

A. Dogandžić and B. Zhang, “Estimating Jakes’ Doppler power
spectrum parameters using the Whittle approximation,” IEEE
Trans. Signal Processing, vol. 53, pp. 987–1005, Mar. 2005.

Example. Autoregressive (AR) parameter estimation:

Pxx(f ;θ) =
σ2

u

|A(f ;a)|2
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where θ = [a[1], a[2], . . . , a[p]︸ ︷︷ ︸
aT

, σ2
u]T , and

A(f ;a) = 1 +
p∑

m=1

a[m] exp(−j2πfm).

So

log p(x;a, σ2
u) = −N

2
log 2π

−N

2

∫ 1/2

−1/2

(
log

σ2
u

|A(f ;a)|2
+

Ix(f)
σ2

u
|A(f ;a)|2

)
df.

Assuming A(z) = 1 +
∑p

m=1 a[m]z−m to be minimum-phase
[typically required for stability of 1/A(z)], then

∫ 1/2

−1/2

log |A(f ;a)|2 df = 0

see Problem 7.22 in Kay-I. Therefore

log p(x;a, σ2
u) = −N

2
log 2π − N

2
log σ2

u

− N

2σ2
u

∫ 1/2

−1/2

|A(f ;a)|2 Ix(f) df.
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Differentiating with respect to σ2
u and setting the result to zero,

we obtain, for a fixed a,

σ̂2
u(a) =

∫ 1/2

−1/2

|A(f ;a)|2 Ix(f) df.

Then, the concentrated Whittle log-likelihood function of a is
obtained by substituting σ̂2

u(a) into the Whittle log-likelihood
log p(x;a, σ2

u):

log p(x;a, σ̂2
u(a)) = −N

2
log 2π − N

2
log σ̂2

u(a)−N/2.

We will discuss the concentrated likelihood approach later, see
p. 49. To find â, we need to maximize the above concentrated
likelihood or, equivalently, minimize σ̂2

u:

min
a

J(a) = min
a

∫ 1/2

−1/2

|A(f ;a)|2 Ix(f) df.

The above function is quadratic in a, resulting in the global
minimum upon differentiation. For k = 1, 2, . . . , p, we have

∂J(a)
∂a[k]

=
∫ 1/2

−1/2

[
A(f ;a)

∂A?(f ;a)
∂a[k]︸ ︷︷ ︸

exp(j2πfk)

+
∂A(f ;a)

∂a[k]︸ ︷︷ ︸
exp(−j2πfk)

A?(f ;a)
]
Ix(f) df.
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Since A(−f ;a) = A?(f ;a) and Ix(−f) = Ix(f), we have

∂J(a)
∂a[k]

= 2
∫ 1/2

−1/2

A(f ;a)Ix(f) exp(j2πfk) df.

Setting the above expression to zero, we get

∫ 1/2

−1/2

[
1 +

p∑
m=1

a[m] exp(−j2πfm)
]
Ix(f) exp(j2πfk) df = 0

or

p∑
m=1

a[m]
∫ 1/2

−1/2

Ix(f) exp[j2πf(k −m)] df

= −
∫ 1/2

−1/2

Ix(f) exp(j2πfk) df.

But,
∫ 1/2

−1/2
Ix(f) exp(j2πfk) df is just the inverse discrete-

time Fourier transform (DTFT) of the periodogram evaluated
at k, which is equal to the biased sample estimate of the
autocorrelation function:

r̂xx[k] =
{

1
N

∑N−1
i=k x[i]x[i− |k|], |k| ≤ N − 1,

0, k ≥ N − 1
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Hence, the Whittle (asymptotic) ML estimate of the AR filter
parameter vector a solves

p∑
m=1

â[m] r̂xx[k −m] = −r̂xx[k], k = 1, 2, . . . , p

which are the estimated Yule-Walker equations.
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Computing the Estimates

Typically, finding the ML estimate requires a nonlinear
p−dimensional optimization (for θ of size p). More generally,

θ̂ = arg min
θ

V (θ)

where, for ML estimation, we have V (θ) = − log p(x;θ).

Newton-Raphson Iteration: Assume that a guess θ(i) is
available. We wish to improve θ(i), yielding θ(i+1). Let us
apply a quadratic Taylor expansion:

V (θ) ≈ V (θ(i)) + gT
i θ

(i)
+ 1

2 · (θ
(i)

)THi θ
(i)

where

θ
(i)

= θ − θ(i)

gi =
∂V (θ)

∂θ

∣∣∣
θ=θ(i)

Hi =
∂2V (θ)
∂θ∂θT

∣∣∣
θ=θ(i).
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Newton-Raphson Iteration
(Ch. 7.7 in Kay-I)

Complete the squares:

V (θ) ≈ (θ
(i)

+ H−1
i gi)

T 1
2 Hi (θ

(i)
+ H−1

i gi) + const.

We assume that Hi > 0

(i.e.

Hessian matrix of V (θ)︷ ︸︸ ︷
the second derivative of V (θ) with respect to θ, computed

at θi, is positive definite)
and thus choose

θ(i+1) = θ(i) −H−1
i gi.

Newton-Raphson iteration usually has quadratic convergence
near the optimum, i.e.

‖θ(i+1) − θ‖ ≤ c ‖θ(i) − θ‖2.

where c is a positive constant. Therefore, we gain approximately
one significant digit per iteration.

However, the algorithm can diverge if we start too far from the
optimum. To facilitate convergence (to a local optimum, in
general), we can apply a damped Newton-Raphson algorithm.
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Here is one such damped algorithm:

θ(i+1) = θ(i) − µi ·H−1
i gi (9)

where the step length µi is µi = 1, 1/2, 1/4, . . .. In particular,
in the ith iteration, start with the step length µi = 1, compute
θ(i+1) using (9), and check if

V (θ(i+1)) < V (θ(i))

holds; if yes, go to the (i + 1)st iteration. If no, keep halving

µi and recomputing θ(i+1) using (9) until V (θ(i+1)) < V (θ(i))
holds — then go to the (i+1)st iteration. Once in the (i+1)st
iteration, reset µ(t+1) to 1 and continue in the same manner.

Modification: Use an approximate form of the Hessian matrix
of V (θ)

∂2V (θ)
∂θ ∂θT

.

In the case of ML estimation, use the FIM instead of this
Hessian:

Hi = I(θ(i))
and the resulting algorithm is called Fisher scoring. This choice
of Hi usually guarantees positive definiteness of the Hessian
matrix: Hi = I(θ(i)) > 0.

Note: The convergence point is a local minimum of V (θ).
It is a global minimum if V (θ) is a unimodal function of θ
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or if the initial estimate is sufficiently good. (If we suspect
that) there are multiple local minima of V (θ) (i.e. multiple
local maxima of the likelihood function), we should try many
(wide-spread/different) starting values for our Newton-Raphson
or Fisher scoring iterations.

If the parameter space Θ is not RI p, we should also examine the
boundary of the parameter space to see if a global maximum
of the likelihood function (i.e. a global minimum of V (θ))
lies on this boundary. Pay attention to this issue in your
homework assignments and exams, as well as in general.
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Newton-Raphson Iteration: Example

Suppose x[n] = s[n;θ] + e[n] where e[n] is white Gaussian
noise with known variance σ2, s[n;θ] = sin(ω1n) + sin(ω2n),
θ = [ω1, ω2]T , and n = 0, 1, . . . , N − 1.

Ignoring constants, we obtain the negative log likelihood:

V (θ) = − log p(x;θ) =
1

2 σ2

N−1∑
n=0

(x[n]− s[n;θ])2 + const

its gradient:

V ′(θ) = − 1
σ2

N−1∑
n=0

(x[n]− s[n, θ]) · ∂s[n;θ]
∂θ

and the FIM:

I(θ) =
1
σ2

N−1∑
n=0

∂s[n;θ]
∂θ

∂s[n;θ]
∂θT

.

We can use H = I(θ) and the damped Fisher scoring iteration

EE 527, Detection and Estimation Theory, # 3 48



becomes

θ(i+1) = θ(i) − µi · I(θ(i))−1 · V ′(θ(i))

= θ(i)

+µi ·

{
N−1∑
n=0

n2

[
cos2(ω(i)

1 n) cos(ω(i)
1 n) cos(ω(i)

2 n)
cos(ω(i)

1 n) cos(ω(i)
2 n) cos2(ω(i)

2 n)

] }−1

·
N−1∑
n=0

(x[n]− s[n;θ(i)])

[
n cos(ω(i)

1 n)
n cos(ω(i)

2 n)

]
.

EE 527, Detection and Estimation Theory, # 3 49



Example: Concentrated Likelihood

Consider a situation in which a small-scale disease epidemic
has been observed, with individuals exposed to the disease (e.g.
virus) at a common place and time. Or, in a similar computer-
analogous scenario, consider computers infected by a virus. We
assume that a time interval is known for exposure, but not the
exact time.

We collect times at which infection was detected at various
computers (’incubation times’), say, with time 0 corresponding
to the start of a known interval in which exposure occurred.
Let x1, x2, . . . , xn be the collected infection times after the
exposure. Assume that x1, x2, . . . , xn are i.i.d. following some
distribution. Here, we adopt the following lognormal model:

p(xi;θ) =

{
1

(xi−α)σ
√

2π
exp{− 1

2σ2[log(xi − α)− µ]2}, xi > α

0, otherwise

with parameters
θ = [α, µ, σ]T .

where the parameter α > 0 represents the time at which the
exposure took place. Since the support of the above distribution
depends on the parameter α, the regularity condition (i) on p.
29 does not hold.
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Here are some references related to the above model:

H.L. Harter and A.H. Moore, “Local-maximum-likelihood
estimation of the parameters of three-parameter lognormal
populations from complete and censored samples,” J. Amer.
Stat. Assoc., vol. 61, pp. 842–851, Sept. 1966.

B.M. Hill, “The three-parameter lognormal distribution and
Bayesian analysis of a point-source epidemic,” J. Amer. Stat.
Assoc., vol. 68, pp. 72–84, Mar. 1963.

Note: this model is equivalent to having xi, i = 1, 2, . . . , N
such that log(xi − α) ∼ N (µ, σ2).

The log-likelihood function is

l(θ) =
N∑

i=1

log p(xi;θ)

= −N

2
log(2πσ2)−

N∑
i=1

log(xi − α)

− 1
2σ2

N∑
i=1

[
log(xi − α)− µ

]2
where xi > α, ∀i = 1, 2, . . . , N .

For a fixed α, we can easily find µ and σ2 that maximize the
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likelihood:

µ̂(α) =
1
N

N∑
t=1

log(xi − α)

σ̂2(α) =
1
N

N∑
t=1

[log(xi − α)− µ̂(α)]2

which follows from the above relationship with the normal pdf.
Now, we can write the log-likelihood function as a function of
α alone, by substituting µ̂(α) and σ̂2(α) into l(θ):

l([α, µ̂(α), σ̂2(α)]T )

= −N

2
log[2πσ̂2(α)]−

N∑
i=1

log(xi − α)− N

2
.
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Example: ML Estimation
for Eddy-Current Data

Data collected with a rotating probe, consisting of three coils
spaced 2π/3 rad (120◦) apart. Each coil scans the inner surface
of the tube by moving along a helical path.

Data acquisition scheme.

A preprocessing step is performed first, with goal to extract
meaningful information from the rotating-probe data, see

P. Xiang, S. Ramakrishnan, X. Cai, P. Ramuhalli, R. Polikar,
S.S. Udpa, and L. Udpa, “Automated analysis of rotating probe
multi-frequency eddy current data from steam generator tubes,”
Intl. J. Applied Electrom. Mech., vol. 12, pp. 151–164, 2000.
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Objective: Characterize the amplitude and phase probability
distributions of the potential defects. The estimated
distribution parameters can be used for:

• defect detection,

• defect classification and characterization, e.g. discriminating
between inner diameter (ID) and outer diameter (OD)
defects,

• denoising.

Statistical Model: K complex measurements x[k], k =
0, 1, . . . ,K − 1 at the defect location modeled as

x[k] =
√

αk · ejβk + e[k]

where

• αk ≡ i.i.d. signal powers following a Gamma(a, b)
distribution (Interestingly, in the special case where a = 1,
the amplitudes

√
αk follow a Rayleigh distribution.),

• βk ≡ i.i.d. signal phases independent of the amplitudes,
where βk follow a von Mises distribution (with parameters c
and d),

• e[k] i.i.d. zero-mean complex Gaussian noise independent of
the signal amplitudes and phases, having known variance
σ2. [The noise variance σ2 can be estimated from the
neighboring pixels that contain only noise.]
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Pdfs of αk and βk:

pα(αk; a, b) =
ba

Γ(a)
αa−1

k exp(−bαk), αk > 0, a, b > 0

and

pβ(βk; c, d) =
1

2πI0(d)
exp[d cos(βk−c)], 0 < βk ≤ 2π, d > 0

where I0(·) denotes the modified Bessel function of the first
kind and order zero. Define the unknown parameter vector

λ = [a, b, c, d]T

EE 527, Detection and Estimation Theory, # 3 56



and the vectors of signal amplitudes and phases

θk = [αk, βk]T , k = 0, 1, . . . ,K − 1.

Marginal distribution of the kth observation:

px(x[k];λ) =
∫
Θ

px|θ(x[k] |θ) pθ(θ ; λ) dθ, k = 0, 1, . . . ,K − 1

where θ = [α, β]T , Θ = {(α, β) : 0 < α < ∞, 0 < β < 2π},
and

px|θ(x[k] |θ) =
1

πσ2
exp

[
− |x[k]−

√
α · ejβ|2

σ2

]
pθ(θ;λ) = pα(α; a, b) pβ(β; c, d).

ML estimate of λ obtained by maximizing the log-likelihood of
λ for all measurements x = [x[0], x[1], . . . , x[K − 1]]T :

L(λ,y) =
K−1∑
k=0

log px(x[k];λ). (10)

Newton-Raphson iteration for finding the ML estimates of λ
[i.e. maximizing (10)]:

λ(i+1) = λ(i)−δ(i) ·
[ ∂2L(λ(i))

∂λ ∂λT︸ ︷︷ ︸
Hessian of the log likelihood

]−1 ∂L(λ(i))
∂λ︸ ︷︷ ︸

gradient

(11)
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where the damping factor 0 < δ(i) ≤ 1 is chosen (at every step
i) to ensure that the likelihood function (10) increases and the
parameter estimates remain in the allowable parameter space
(a, b, d > 0).

We utilized the following formulas to compute the gradient
vector and Hessian matrix in (11):

∂

∂λi
{log px(x;λ)} =

1
px(x;λ)

∫
Θ

px|θ(x|θ)
∂pθ(θ;λ)

∂λi
dθ

∂2

∂λi∂λm
{log px(x;λ)} =

1
px(x;λ)

∫
Θ

px|θ(x|θ)
∂2pθ(θ;λ)
∂λi∂λm

dθ

− 1
[px(x;λ)]2

·
∫
Θ

px|θ(x|θ)
∂pθ(θ;λ)

∂λi
dθ ·

∫
Θ

px|θ(x|θ)
∂pθ(θ;λ)

∂λm
dθ

for i,m = 1, 2, 3, 4.

The above integrals with respect to θ can be easily computed
using Gauss quadratures.

For more details, see

A. Dogandžić and P. Xiang, “A statistical model for eddy-
current defect signals from steam generator tubes,” in
Rev. Progress Quantitative Nondestructive Evaluation, D.O.
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Thompson and D.E. Chimenti (Eds.), Melville NY: Amer. Inst.
Phys., vol. 23, 2004, pp. 605–612.

We now show the performance of the proposed ML estimation
method using data containing two real defects, obtained by
inspecting steam-generator tubes. The K measurements
x[k], k = 0, 1, . . . ,K − 1 were selected from potential defect
regions, and the noise variance σ2 was estimated from the
neighboring regions that contain only noise.
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Least-Squares Approach to Estimation

Suppose that we have a signal model

x = Hθ + w

where x = [x[0], . . . , x[N − 1]]T is the vector of observations,
H is a known regression vector matrix, and w is “error” vector.

LS problem formulation:

θ̂ = arg min
θ
‖x−Hθ‖2.

Solution:
θ̂ = (HTH)−1HTx.

We can also use weighted least squares, which allows us to
assign different weights to measurements. For example, if
E [wwT ] = C is known, we could use

θ̂ = arg min
θ
‖x−Hθ‖2

C−1 = arg min
θ

(x−Hθ)HC−1(x−Hθ)

Let H = [h1 · · ·hp]:

x =
p∑

k=1

θk hk + w.

EE 527, Detection and Estimation Theory, # 3 61



The “signal part” Hθ of the N -vector x is confined to the
p-dimensional subspace spanned by [h1 · · ·hp] — the “signal
subspace”!

The signal estimate

x̂ = Hθ̂ = H(HTH)−1HT︸ ︷︷ ︸
P

x = Px

is the orthogonal projection of x onto span(H) (the column
space of H). The error

ŵ = x−H(HTH)−1HTx

is the orthogonal projection of x onto the orthogonal
complement of span(H).
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Note: P = H(HTH)−1HT is the projection matrix onto the
column space of H, and P⊥ = I − P is the complementary
projection matrix.

Recall: Projection matrices are symmetric and idempotent:
P = P T = P 2.

Also
(x− Hθ̂︸︷︷︸bx )TH = 0.

Example:

Obviously, (x − x̂) ⊥ {h1,h2}. This is the orthogonality
principle: the minimum error is orthogonal to the columns of
H (called regressors in statistics).
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In general,

x− x̂ ⊥ span(H) ⇔ x− x̂ ⊥ hj, ∀hj ⇔ HT (x−Hθ̂) = 0.
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Computational Aspects of Least Squares

QR decomposition of H:

where Q has orthonormal columns: QTQ = I (and rows, i.e.
QQT = I).

R is upper triangular, and may not have full rank:
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For the full-rank case,

‖x−Hθ‖2 = ‖QT x−R θ‖2

= ‖QT
1 x−R1 θ‖2 + ‖QT

2 x‖2

=⇒ θ̂ = R−1
1 QT

1 x.

Comments:

• QTx yields coordinates of x on columns of Q.

• x̂ = Q1Q
T
1 x = Px = H(HTH)−1HT x. Here, the

projection matrix P is also known as the hat matrix (because
it puts the hat on x).

• Non full rank case: rank(H) = r < p. We need to solve
QT

1 x = R11θ1 + R12θ2, where Q1 has r columns. There
are infinitely many solutions — to get one, arbitrarily set
θ2 = 0(p−r)×1 and solve for θ1. Here, x̂ = Q1Q

T
1 x is still

well defined, and unique.
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Nonlinear Least Squares (NLLS)

Often, the signal is not a linear function of θ, say f(θ). Then,
we obtain a NLLS estimate of θ as follows:

θ̂ = arg min
θ

V (θ)

V (θ) = ‖x− f(θ)‖2.

Example: s[n] = r cos(ωn + φ), n = 0, 1, 2, . . . , N − 1 gives

f(r, ω, φ) =
[
r cos(φ), . . . , r cos((N − 1)ω + φ)

]T

.

Nonlinear problem =⇒ we usually need iterative optimization.

Recall the damped Newton-Raphson’s method:

θ̂
(k+1)

= θ̂
(k)
− µk ·H−1

k gk

where µk is the step length and Hk, gk are the Hessian and

gradient of V (θ), evaluated at θ(k).
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Nonlinear Least Squares
Newton-Raphson Iteration

Define

f
(k)
θ =

∂f(θ)
∂θT

∣∣∣
θ=θ(k), f (k) = f(θ(k)).

The partial derivatives are then

gk =
∂(x− f)T (x− f)

∂θ

∣∣∣
θ=θ(k) = −2(f (k)

θ )T (x− f (k))

Hk =
∂2(x− f)T (x− f)

∂θ∂θT

∣∣∣
θ=θ(k) = 2(f (k)

θ )Tf
(k)
θ − 2G(k)

where [G(k)]i,l = ∂2fT

∂θi∂θl
(x− f)

∣∣∣
θ=θ(k).

Assuming that we have a “small residual” problem, such
that x − f (k) ≈ 0 (close to the optimum), the Hessian is
approximated by

Hk = 2(f (k)
θ )Tf

(k)
θ .

Recall: (f (k)
θ )Tf

(k)
θ is the FIM for θ (under the AWGN

measurement model), hence this approach is equivalent to
Fisher scoring when the noise is AWGN. It is also known as the
Gauss-Newton algorithm.
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Nonlinear Least Squares (cont.)

(Damped) Gauss-Newton:

θ̂
(k+1)

= θ̂
(k)

+ µk [(f (k)
θ )T (f (k)

θ )]−1(f (k)
θ )T (x− f (k)).

The search direction γ = [(f (k)
θ )T (f (k)

θ )]−1(f (k)
θ )T (x − f (k))

is the LS solution to

min
γ
‖(x− f (k))− f

(k)
θ γ(k)‖2

which is efficiently computed in Matlab using

γ = f θ\(x− f).

Note that the approximate Hessian fT
θ f θ is always positive

(semi)definite, which is generally not true for the exact Hessian!
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Separable NLLS
Consider the sinusoid example

s[n] = r cos(ωn + φ) = A sin(ωn) + B cos(ωn).

A and B enter linearly in s[n]! We can write

f(θ) = H( α︸︷︷︸
ω

) β︸︷︷︸24 A
B

35

where θ =
[

α
β

]
. For a fixed α, the LS solution for β is

β̂(α) = [HT (α)H(α)]−1HT (α) x.

Substituting into V (θ) gives the concentrated criterion:

Vc(α) =
∥∥x−H(α)[HT (α)H(α)]−1HT (α)︸ ︷︷ ︸

P (α)

x
∥∥2

where P (α) is the projection matrix onto the column space of
H(α). Equivalently

α̂ = arg max
α

xT H(α)[HT (α)H(α)]−1HT (α)︸ ︷︷ ︸
P (α)

x.
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Here, α̂ maximizes the projection of x onto the signal subspace.

We have used the fact that our cost function can be easily
minimized with respect to a subset of parameters (β, in our
case) if the rest of the parameters α are fixed. We have
obtained a concentrated cost function to be maximized with
respect to α only.

Comments:

• There is nothing fundamentally statistical about LS: the
least squares approach solves a minimization problem in
vector spaces.

• In linear problems, LS allows a closed-form solution.

• We need to replace T with H (the Hermitian transpose) to
obtain the corresponding results for complex data:

β̂(α) = [HH(α)H(α)]−1HH(α)x

minimizes ‖x−H(α)β‖2 = [x−H(α)β]H[x−H(α)β],
i.e.

β̂(α) = arg min
β
‖x−H(α)β‖2

and α can be estimated using the concentrated criterion:

α̂ = arg max
α

xH H(α)[HH(α)H(α)]−1HH(α)︸ ︷︷ ︸
P (α)

x.
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