
Cramér-Rao Bound (CRB) and Minimum
Variance Unbiased (MVU) Estimation

Reading

• Kay-I, Ch. 3.

How accurately we can estimate a parameter θ depends on
the pdf or pmf of the observation(s) x (i.e. on the likelihood
function).

Example (Kay-I, Chapter 3): x[0] = A+ w[0], A unknown,
w[0] ∈ N (0, σ2).

Intuitively, sharpness of the pdf/pmf determines how accurately
we can estimate A.
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Cramér-Rao Bound - Regularity Assumptions

We make two regularity assumptions on p(x; θ):

(i) The set A = {x | p(x; θ) > 0} does not depend on θ. For
all x ∈ A, θ ∈ Θ, ∂/∂θ log p(x; θ) exists and is finite.
(Here, Θ ≡ the parameter space.)

(ii) If T is any statistic such that EX(|T |) <∞ for all θ ∈ Θ,
then integration and differentiation by θ can be interchanged
in
∫
T (x) p(x; θ) dx, i.e.

∂

∂θ

[∫
T (x) p(x; θ)dx

]
=
∫
T (x)

∂

∂θ
p(x; θ) dx (1)

whenever the right-hand side is finite.
In particular, (1) should hold for T (x) = 1 =⇒ we will use
this special case in Lemma 1.

Note: Checking assumption (ii) is not very practical. We need
simple sufficient conditions on p(x; θ) so that (ii) holds. The
assumption (ii) is “coupled” with (i) — if (i) does not hold,
it does not make sense to talk about changing the order of
integration and differentiation with respect to θ.

Notation: In this section, we adopt the (common) notation

EX[T (X)] =
∫
T (x) p(x; θ) dx.
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Generally, in these notes we will use either this notation or

E p[T (X)] =
∫
T (x) p(x; θ) dx

E p(x;θ)[T (X)] =
∫
T (x) p(x; θ) dx.

Observe that B & D adopt the (also common, but in statistics)
notation E θ[T ] for the above expectation, with goal to
emphasize the dependence on the parameter θ — do not
get confused by this difference. In the “classical” discussion
here, only X is a random quantity, so we could as well drop
the subscript and use E [T (X)].

Proposition. If

p(x; θ) = h(x) exp{η(θ)T (x)−A(θ)} (exponential family)

and η(θ) has a nonvanishing continuous derivative on Θ, then
(i) and (ii) hold.

If (i) holds, it is possible to define an important characteristic
of p(x; θ), the Fisher information number I(θ):

I(θ) = EX

{(
∂

∂θ
log p(X; θ)

)2
}

=
∫ (

∂

∂θ
log p(x; θ)

)2

p(x; θ) dx.
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Note that 0 ≤ I(θ) ≤ ∞.

Terminology:
∂

∂θ
log p(x; θ)

is known as the score function for θ.

Lemma 1. Suppose that (i) and (ii) hold and that

EX

∣∣∣∣ ∂∂θ log p(X; θ)
∣∣∣∣ <∞.

Then

EX

( ∂
∂θ

log p(X; θ)
)

= 0 and, thus, I(θ) = varX

(
∂

∂θ
log p(X; θ)

)
.

Proof.

EX

(
∂

∂θ
log p(X; θ)

)
=
∫ {[ ∂

∂θ
p(x; θ)

]/
p(x; θ)

}
p(x; θ) dx

=
∫

∂

∂θ
p(x; θ) dx =

∂

∂θ

∫
p(x; θ) dx = 0.

Here, we have utilized the chain rule of differentiation:

df(p(z))
dz

=
∂f(w)
∂w

∣∣∣
w=p(z)

· dp(z)
dz

with f(·) = log(·). 2
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Comments:

• We have just shown that the score function has mean zero
and variance equal to the Fisher information I(θ).

• The score function is equal to zero at the ML estimator of
θ.

Example. Suppose X1, . . . , Xn are i.i.d. measurements from
a Poisson(λ) distribution [p(xi;λ) = λxi/(xi!) · exp(−λ), see
your distribution table]. Then

∂

∂λ
log p(x;λ) =

∑n
i=1 xi
λ

− n

I(λ) = var
(∑n

i=1Xi

λ

)
=

1
λ2
· nλ =

n

λ
.

Theorem 1. (Information Inequality) Let T (X) be any
statistic such that varp(x;θ)[T (X)] < ∞ for all θ. Denote
E p(x;θ)[T (X)] by ψ(θ). Suppose that (i) and (ii) hold and
0 < I(θ) <∞. Then, for all θ

varp(x;θ)[T (X)] ≥ |ψ
′(θ)|2

I(θ)
. (2)

where

ψ′(θ) =
dψ(θ)
dθ

.
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Proof. Using (i) and (ii), we obtain

ψ′(θ)=
∫
T (x)

∂p(x; θ)
∂θ

dx=
∫
T (x)

∂ log p(x; θ)
∂θ

p(x; θ) dx.

Now

ψ′(θ) = cov
[
∂ log p(X; θ)

∂θ
, T (X)

]
.

[Recall: cov(P,Q)
4
= E [(P − E [P ])(Q− E [Q])].] Apply the

Cauchy-Schwartz inequality

[cov(P,Q)]2 ≤ var(P ) · var(Q)

to the random variables

P︷ ︸︸ ︷
∂ log p(X; θ)/∂θ and

Q︷ ︸︸ ︷
T (X):

|ψ′(θ)|2 ≤ var[T (X)] · var
[
∂ log p(X; θ)

∂θ

]
.

The theorem follows because, by Lemma 1, var
(
∂
∂θ log p(X; θ)

)
=

I(θ). 2

EE 527, Detection and Estimation Theory, # 2 6



Digression

It is instructive to derive the Cauchy-Schwartz inequality. First,
remember that any covariance matrix needs to be positive
semidefinite. Therefore,

∣∣∣︸︷︷︸
determinant

cov
( [

P
Q

]
︸ ︷︷ ︸

covariance matrix

) ∣∣∣︸︷︷︸
determinant

=
∣∣∣∣ var(P ) cov(P,Q)

cov(P,Q) var(Q)

∣∣∣∣ ≥ 0

and the Cauchy-Schwartz inequality follows.

But, why does a covariance matrix of

[
P
Q

]
need to be

positive semidefinite? Because, for arbitrary a and b, the
following holds:

var[aP + bQ] ≥ 0
which can be rewritten as

[a, b] cov
([

P
Q

]) [
a
b

]
≥ 0, ∀a, b

which, by definition of positive (semi)definiteness, implies that

cov
([

P
Q

])
is a positive semidefinite matrix.
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(Back to the Main Track) Comments:

• If we view T (X) as a (generally biased) estimator of θ, then

E p(x;θ)[T (X)] = ψ(θ) = θ + b(θ)︸︷︷︸
bias

and (2) can be viewed as a lower bound on the variance of
T (X):

varp(x;θ)[T (X)] ≥ |1 + b′(θ)|2

I(θ)
(3)

(This result may not be very useful since it is hard to
analytically compute bias in practice.) In this case, we can
bound the MSE of T (X) as follows:

MSE[T (X)] = varp(x;θ)[T (X)]+[b(θ)]2 ≥ |1 + b′(θ)|2

I(θ)
+[b(θ)]2.

(4)

• Since E p(x;θ)[T (X)] = ψ(θ), we can view T (X) as an
unbiased estimator of ψ = ψ(θ); then (2) gives a lower
bound on variance of T (X), expressed in terms of the Fisher
information I(θ) for θ.

The lower bound depends on T (X) through ψ(θ). If we
consider all unbiased estimators T (X) of ψ(θ) = θ, we obtain
a universal lower bound given by the following.

EE 527, Detection and Estimation Theory, # 2 8



Corollary 1. Suppose the conditions of the above theorem
hold and T (X) is an unbiased estimator of ψ(θ) = θ. Then

varθ[T (X)] ≥ 1
I(θ)

.

The function 1/I(θ) is often referred to as the Cramér-Rao
bound (CRB) on the variance of an unbiased estimator of θ.

Proposition. Suppose p(x; θ) satisfies, in addition to (i) and
(ii), the following condition:
p(x; θ) is twice differentiable and interchange between
integration and differentiation is permitted.
Then

I(θ) = −E p(x;θ)

{
∂2

∂θ2
log p(X; θ)

}
.

Proof.

∂2

∂θ2
log p(x; θ) =

1
p(x; θ)

· ∂
2

∂θ2
p(x; θ)−

(
∂

∂θ
log p(x; θ)

)2

and apply expectation with respect to X to both sides [i.e.
multiply by p(x; θ) and integrate]. 2

The above results provides another way of computing the Fisher
information number which may be more convenient that taking
the expectation of the score squared.
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Example. Back to the Poisson example:

I(λ) = EX

{
− ∂2

∂λ2
log p(X;λ)

}
=

1
λ2

EX

( n∑
i=1

Xi

)
=
n

λ

which is easier than the derivation on p. 5. In this case,
X = (1/n) ·

∑n
i=1Xi is the ML estimator of λ and it is

unbiased. Since, in the Poisson case, var(Xi) = λ, we have:

var(X) =
λ

n
= CRB(λ) =

1
I(λ)

and, by Corollary 1, X is a minimum variance unbiased (MVU)
estimator of λ.

Example: Let us continue with the same Poisson example
but consider unbiased estimators T (X) of ψ = λ2. Here,
ψ(λ) = λ2 =⇒ ψ′(λ) = 2λ and

varp(x;λ)[T (X)] ≥ |ψ
′(λ)|2

I(λ)
=

4λ2

n/λ
=

4λ3

n
.

Corollary 2. Suppose that the elements ofX = [X1, . . . , Xn]T

are i.i.d. with density p(x; θ) and that the conditions (i) and
(ii) hold. Define the “contribution” of a single measurement
to the Fisher information:

I1(θ) = E
{[ ∂
∂θ

log p(X1; θ)
]2}

.
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(Here, we arbitrarily pick X1 as our single measurement, its
contribution to the Fisher information is equal to that of X2

etc.) Then

I(θ) = n I1(θ) and varp(x;θ)[T (X)] ≥ |ψ
′(θ)|2

n I1(θ)
.

Proof.

I(θ) = var
(
∂

∂θ
log p(X; θ)

)
= var

(
n∑
i=1

∂

∂θ
log p(Xi; θ)

)

=
n∑
i=1

var
(
∂

∂θ
log p(Xi; θ)

)
= n I1(θ).

2

Example: Suppose that X1, . . . , Xn are i.i.d. observations
from a normal distribution with unknown mean θ and known
variance σ2. Note that the conditions (i) and (ii) hold. Then

I1(θ) = E

{(
∂

∂θ
log
{

1√
2πσ2

· exp
[
− (X1 − θ)2

2σ2

]})2
}

= E

[(
X1 − θ
σ2

)2
]

=
1
σ2
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and, by Corollary 2,

I(θ) = n I1(θ) =
n

σ2
.

Observe that

var{X} =
σ2

n
= CRB(θ) =

1
I(θ)

and, therefore, X = 1
n

∑n
i=1Xi is an MVU estimator of θ.

Since X does not depend on σ2, it is MVU for any σ2. Hence,
X is an MVU estimator of θ even if σ2 is unknown.

Definition. An unbiased estimator of θ that attains the CRB
for θ for all θ in the parameter space Θ is said to be efficient.

Note: Efficient ⇒ MVU. However, MVU ; efficient, because
CRB is not always attainable by MVU estimators (at least not
for finite samples, i.e. finite n).

Under certain regularity conditions, ML estimators attain
the CRB asymptotically (i.e. for large n); hence they are
asymptotically efficient, which is one of the main reasons for
their popularity.

Proof of “Efficiency ⇒ MVU.” Recall Corollary 1: for any
unbiased estimator, its variance must be greater than or equal
to the CRB. If there exists an unbiased estimator whose variance
equals the CRB for all θ ∈ Θ, then it must be MVU.
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In the following theorem, we give necessary and sufficient
conditions for the CRB to be attainable. Previous examples in
which MVU estimator attains the CRB were situations where
X follows a one-parameter exponential family. This is not an
accident.

Theorem 2. Suppose that assumptions (i) and (ii) hold and
there exists an unbiased estimate T of ψ(θ) that achieves the
lower bound of the information inequality theorem (Theorem
1) for every θ. Then p(x; θ) is a one-parameter exponential
family with pdf/pmf of the form

p(x; θ) = h(x) exp[η(θ)T (x)−B(θ)]. (5)

Conversely, if p(x; θ) is a one-parameter exponential family
of the above form and η(θ) has a continuous nonvanishing
derivative on Θ, then T (X) achieves the CRB and is the MVU
estimator of E X[T (X)]. Hence, T (X) is an efficient estimator
of E X[T (X)] = ψ(θ).

Proof. See B & D, Theorem 3.4.2. 2

Note that the above theorem gives both necessary and sufficient
conditions for an efficient estimator.

One-Parameter Canonical Exponential Family. In handout
# 1, we introduced the one-parameter canonical exponential
family:

p(x; η) = h(x) exp
[
η T (x)−A(η)

]
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for which we know that

E p(x;η)[T (X)] =
dA(η)
dη

, varp(x;η)[T (X)] =
d2A(η)
dη2

.

Therefore, in this case, Theorem 2 states that T (X) is

an efficient estimator of EX[T (X)] = dA(η)
dη ; we can easily

compute the variance of this estimator as well:

I(η) = varp(x;η)
(
T (X)− dA(η)

dη︸ ︷︷ ︸
score function

)
= varp(x;η)

(
T (X)

)
=
d2A(η)
dη2

and this variance, according to Theorem 2, is equal to the CRB
of dA(η)

dη :

CRB
(dA(η)

dη

)
=
[
I
(dA(η)

dη

)]−1

= I(η).

E X[T (X)] = θ. Suppose now that we pick θ = θ(η) = dA(η)
dη ;

then, clearly, T (X) is an efficient estimator of EX[T (X)] =
dA(η)
dη = θ and

dA(η)
dη︸ ︷︷ ︸
θ

=
dB(θ)
dθ

∣∣∣
θ=

dA(η)
dη

· dθ(η)
dη︸ ︷︷ ︸

CRB(θ)=[I(θ)]−1︸ ︷︷ ︸
chain rule

=⇒ dB(θ)
dθ

= θ·I(θ).
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This case is considered in Kay-I — differentiating the logarithm
of (5) with respect to θ applying the above identity and using
the fact that

dη

dθ
=

1
dθ/dη

= I(θ)

yields the condition provided by Kay:

∂ log p(x; θ)
∂θ

= I(θ)︸︷︷︸
Fisher information

for θ

[T (x)− θ] (6)

see Kay-I, App. 3A for Kay’s proof. To summarize: T (x) is
an efficient estimator of θ if and only if the score function
corresponding to the underlying probabilistic model can
be written in the form (6).

Recall: We used the Cauchy-Schwartz inequality to derive
the information inequality theorem. Proving the above result
reduces to considering the case where equality holds in the
Cauchy-Schwartz inequality — the score function needs to be
an affine function of T (x).

Comments:

• Theorem 2 tells us that T (x) in (5) is an efficient estimator
of its expectation. We could use either (5) or (6) (from
Kay-I) to verify if an estimator is efficient.
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• If we wish to answer the question if an efficient estimator of
a particular parameter θ exists, then we should check (6).
Sometimes (5) can be used even if E [T (x)] 6= the parameter
of interest; in particular, this is the case when there is
an affine relationship between T (x) and the parameter of
interest.
Note: if T (x) is an efficient estimator of its expectation
E p(x;θ)[T (X)], this does not imply that a non-affine function
of T (x) is an efficient estimator of its expectation. For
example, suppose that T (x) is an efficient estimator of its
expectation; then 1/T (x), say, will generally not be an
efficient estimator of E p(x;θ)[1/T (X)].

Example: If X1, X2, . . . , Xn are i.i.d. Poisson(λ), then

p(x1, . . . , xn;λ) =
λ

Pn
i=1 xi∏n

i=1 xi!
exp(−nλ)

=
1∏n

i=1 xi!
exp

( n∑
i=1

xi︸ ︷︷ ︸
T (x)

log λ︸︷︷︸
η

− nλ︸︷︷︸
A(η)

)
.

By utilizing the fact that the above pmf belongs to the one-
parameter exponential family, we can find the Fisher information
number for η = log λ:

A(η) = n exp(η) =⇒ I(η) =
d2A(η)
dη2

= n exp η = nλ
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which is also equal to the CRB for dA(η)
dη = n exp(η) = nλ.

Finally, we also know that T (x) =
∑n
i=1 xi is an efficient

estimator of dA(η)
dη = nλ, or

X =
1
n
·
n∑
i=1

Xi

is an efficient estimator of λ and the CRB for λ is λ/n, which
is consistent with the CRB result for Poisson mean parameter
that we obtained before.

To show efficiency of X using (6), we first summarize the
results that we have obtained earlier:

var(X) =
λ

n
, I(λ) =

n

λ

and
∂

∂λ
log p(x;λ) =

∑n
i=1 xi
λ

− n.

Indeed,
∂ log p(x;λ)

∂λ
=

n

λ︸︷︷︸
I(λ)

( x︸︷︷︸
T (x)

−λ).
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Cramér-Rao Bound – Example

Consider a sinusoid of unknown frequency but known amplitude
and phase:

s[n; f ] = A cos(2πfn+ φ), 0 < f < 0.5

x[n] = s[n; f ] + w[n], 0 ≤ n ≤ N − 1.

Assume that w[n] is additive white Gaussian noise (AWGN)
with known variance σ2. (Recall, the AWNG assumption on
w[n] ⇐⇒ w[n] are i.i.d. zero-mean Gaussian with the same
variance σ2). Then

p(x[n]; f) =
1√

2πσ2
· exp

[
− 1

2σ2
· (x[n]− s[n; f ])2

]
.

Since the observations are independent, we get

p(x; f) =
N−1∏
n=0

p(x[n]; f).

Taking the log yields

log p(x; f) =
N−1∑
n=0

log p(x[n]; f)

= − 1
2σ2

N−1∑
n=0

(x[n]− s[n; f ])2 + const︸ ︷︷ ︸
indep. of f
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Differentiate:

∂ log p(x; f)
∂f

=
1
σ2
·
N−1∑
n=0

∂s[n; f ]
∂f

· (x[n]− s[n; f ])

and once more:

∂2 log p(x; f)
∂f2

=
1
σ2
·
N−1∑
n=0

∂2s[n; f ]
∂f2

· (x[n]− s[n; f ])

− 1
σ2
·
N−1∑
n=0

(
∂s[n; f ]
∂f

)2

.

The negative expected value of this expression is the Fisher
information number

I(f) = −E p(x;f)

[∂ log p(X; f)
∂f

]
=

1
σ2
·
N−1∑
n=0

(
∂s[n; f ]
∂f

)2

= SNR ·
N−1∑
n=0

[2πn · sin(2πfn+ φ)]2

where SNR = A2/σ2 is the signal-to-noise ratio. The CRB is

1/I(f) ≤ var(f) for f̂ unbiased.
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Cramér-Rao bound – Example (cont.)

Consider the case where SNR = 1, N = 10, and φ = 0. Then
Then

s[n; f ] = A cos(2πfn).
Recall that N,A, φ, and σ2 are assumed known.

CRB for f as a function of f , for SNR = 1, N = 10, and φ = 0.

There are preferred frequencies!

As f ↘ 0, the CRB goes to infinity because, in this case, a
slight change in frequency will not alter the signal significantly
because A cos(2πfn) is a flat function of f in the neighborhood
of f = 0. The CRB goes to infinity as f ↗ 1

2 as well.

Consider now the case where SNR = 1, N = 10, and φ =
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−π/2. Then
s[n; f ] = A sin(2πfn).

CRB for f as a function of f , for SNR = 1, N = 10, and φ = −π/2.

Here, f ↘ 0 is good for frequency estimation because we can
easily differentiate between the case of no signal at all (which
happens at f = 0) and a sinusoid with amplitude A.

CRB results can be used to design a good frequency-estimation
system.

In general, CRB is used as a

• measure of the potential performance attainable from the
system,

• benchmark for assessing algorithm performance,

• measure for system design.
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Multiparameter CRB

We extend the CRB to the case of several parameters, θ =
[θ1, . . . , θd]T . We assume that the parameter space Θ is an
open subset of RI d and that p(x;θ) satisfies conditions (i) and
(ii) when differentiation is with respect to θi, i = 1, 2, . . . , d.

The Fisher information matrix (FIM) is defined as

Id×d(θ) = (Ii,k(θ)), i, k ∈ {1, 2, . . . , d}

where Ii,k(θ) = E p(x;θ)

{
∂
∂θi

log p(X;θ) ∂
∂θk

log p(X;θ)
}

.

Proposition. Under the above conditions

(a)

E p(x;θ)

[
∂

∂θi
log p(X;θ)

]
= 0, i = 1, 2, . . . , d

Ii,k = covp(x;θ)

[
∂

∂θi
log p(X;θ),

∂

∂θk
log p(X;θ)

]
for i, k ∈ {1, 2, . . . , d}. Using matrix notation, we rewrite
these results as

E p(x;θ)

[
∂

∂θ
log p(X;θ)

]
= 0︸︷︷︸
d× 1 vector of zeros
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and

I(θ) = covp(x;θ)

[
∂

∂θ
log p(X;θ)

]
.

(b) If X1, . . . , Xn are i.i.d., then X = [X1, . . . , Xn]T has
Fisher information n I1(θ) where I1(θ) is the Fisher
information due to a single observation X1, say (or X2

or . . . ).

(c) If, in addition, p(x;θ) is differentiable and double
integration and differentiation under the integral sign can be
interchanged,

[I(θ)]i,k = −E p(x;θ)

[
∂2

∂θi∂θk
log p(X;θ)

]
, i, k ∈ {1, 2, . . . , d}.

Example. Suppose X ∼ N (µ, σ2) and θ = [µ, σ2]T . Then

log p(x;θ) = −1
2 log(2π)− 1

2 log(σ2)− 1
2σ2

(x− µ)2

I11(θ) = −E
[
∂2

∂µ2
log[p(X;θ)]

]
= E [σ−2] = σ−2

I12(θ) = −E
[
∂

∂σ2

∂

∂µ
log[p(X;θ)]

]
= −σ−4E [X − µ] = 0 = I21(θ)

I22(θ) = −E
[

∂2

∂(σ2)2
log[p(X;θ)]

]
= σ−4/2.
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Therefore

I(θ) =
[
σ−2 0
0 σ−4/2

]
. (7)

Multiple I.I.D. Observations: How about n i.i.d. observations
Xi ∼ N (µ, σ2), i = 1, 2, . . . , n with θ = [µ, σ2]T? Then, (7)
implies that

I1(θ) =
[
σ−2 0
0 σ−4/2

]
and, consequently,

I(θ) = n

[
σ−2 0
0 σ−4/2

]
.

Decoupling: Note that the FIM in this example is diagonal.
Therefore, CRB for µ remains the same whether or not σ2 is
known. Similarly, CRB for σ2 is the same regardless of whether
or not µ is known.

In general, the more parameters1, the larger (or equal) the
CRB; the CRBs are equal in the case of decoupling. See
problems 3.11 and 3.12 in Kay-I.

Theorem 3. Assume that the regularity conditions from
p. 2 hold and suppose that the Fisher information matrix

1We have to compare nested models. Otherwise, we would be comparing apples and
oranges.
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I(θ) is positive definite (hence nonsingular). Then, for
E p(x;θ)[T (X)] = ψ(θ),

varp(x;θ)[T (X)] ≥ ∂ψ(θ)
∂θT

I(θ)−1 ∂ψ(θ)
∂θ

.

More generally, for a d-dimensional statistic T (X) =
[T1(X), . . . , Td(X)]T and

ψ(θ) = E p(x;θ)[T (X)] = [ψ1(θ), . . . , ψd(θ)]T .

Then

covp(x;θ)[T (X)] ≥ ∂ψ(θ)
∂θT

I(θ)−1 ∂ψ(θ)T

∂θ
.

Comments:

• T (X) in Theorem 3 will typically be an estimator [of ψ(θ),
say].

•
covp(x;θ)[T (X)] ≥ ∂ψ(θ)

∂θT
I(θ)−1 ∂ψ(θ)T

∂θ
.

means that

covp(x;θ)[T (X)]− ∂ψ(θ)
∂θT

I(θ)−1 ∂ψ(θ)T

∂θ
≥ 0
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i.e. the matrix on the left is positive semidefinite. Recall: a
matrix A is positive semidefinite if

qTAq ≥ 0 ∀q. (8)

• If T (X) is an unbiased estimator of θ [i.e. ψ(θ) = θ], then

covp(x;θ)[T (X)] ≥ I(θ)−1.

• Suppose now that ψ(θ) = θi corresponding to Ti(X),
where Ti(X) is the ith element of T (X) (and T (X)
is an unbiased estimator of θ). Now, ∂ψ(θ)

∂θ
=

[0, 0, . . . , 0, 1︸︷︷︸
ith place

, 0, . . . , 0]T and, consequently,

varp(x;θ)[Ti(X)] ≥ [I(θ)−1]i,i︸ ︷︷ ︸
(i, i)th element of the CRB for θ

.

• Notation: If

a(θ) =


a1(θ)
a2(θ)

...
am(θ)

 , θ =


θ1
θ2
...
θd
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then

∂a(θ)
∂θT

=


∂a1(θ)/∂θ1 ∂a1(θ)/∂θ2 · · · ∂a1(θ)/∂θd
∂a2(θ)/∂θ1 ∂a2(θ)/∂θ2 · · · ∂a2(θ)/∂θd

... ... · · · ...
∂am(θ)/∂θ1 ∂am(θ)/∂θ2 · · · ∂am(θ)/∂θd


and

∂a(θ)T

∂θ
=
(∂a(θ)
∂θT

)T
.
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Multiparameter Exponential Family and
Efficiency

Consider the canonical k-parameter exponential family:

p(x;η) = exp
[ d∑
i=1

Ti(x) ηi︸ ︷︷ ︸
T (x)Tη

−A(η)
]
h(x)

and assume that the parameter space of η is an open subset of
of RI d. Then

∂ log p(x;η)
∂η

= T (x)− ∂A(η)
∂η

. (9)

Hence, the Fisher information matrix is

I(η) = covp(x;η)[T (X)] =
∂2A(η)
∂η ∂ηT︸ ︷︷ ︸

d× d matrix

. (10)

Theorem 4. Each Ti(X) is an MVU estimator of
E p(x;θ)[Ti(X)].
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Comments:

• The claim in Theorem 4 is a different from stating that

Ti(X) is MVU for E p(x;η)[Ti(X)] = ∂A(η)
∂ηi

if ηk, k 6= i are

known (which has already been stated in Theorem 2). How
do we show this new claim?

Proof. (of Theorem 4). Without loss of generality, let us
focus on i = 1. Note that (10) and (9) imply:

varp(x;θ)[T1(X)] =
∂2A(η)
∂η2

1

E p(x;η)[T1(X)] = ψ(η) =
∂A(η)
∂η1

.

Therefore
∂ψ(η)
∂ηT

=
∂A(η)
∂ηi ∂ηT

is the first row of I(η) = ∂2A(η)

∂η ∂ηT , implying that

∂ψ(η)
∂ηT

I(η)−1 = [1, 0, . . . , 0] I(η)︸ ︷︷ ︸
first row of I(η)

I(η)−1 = [1, 0, . . . , 0]

and, finally,

∂ψ(η)
∂ηT

I(η)−1 ∂ψ(η)
∂η

=
∂ψ(η)
∂η1

=
∂2A(η)
∂η2

1

= varp(x;θ)[T1(X)]
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i.e. we have achieved equality in Theorem 3 =⇒ T1(X) is
MVU for E p(x;θ)[T1(X)]. 2

• Similar to the scalar case, the parametrization θ = ∂A(η)
∂η

is considered in Kay-I, where it is shown that an unbiased
estimator of θ attains the CRB if and only if

∂ log p(x;θ)
∂θ

= I(θ)︸︷︷︸
FIM for θ

[T (x)− θ] (11)

which generalizes (6). To summarize: T (x) is an
efficient estimator of θ if and only if the score function
corresponding to the underlying probabilistic model can
be written in the form (11).

Example: If X1, X2, . . . , Xn are i.i.d. N (µ, σ2), then X =
1
n ·
∑n
i=1Xi is the MVU estimator of µ and 1

n ·
∑n
i=1X

2
i is the

MVU estimator of µ2 + σ2, which follows from

p(x1, . . . , xn;θ) = (2πσ2)−n/2 exp
{
− 1

2σ2

n∑
i=1

(xi − µ)2
}

= (2πσ2)−n/2 exp
(
− nµ2

2σ2

)
· exp

[
− 1

2σ2

(
n · 1

n

n∑
i=1

x2
i︸ ︷︷ ︸

T2(x)

− 2µn · x︸︷︷︸
T1(x)

)]
.
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But, it does not follow that 1
n−1 ·

∑n
i=1(Xi −X)2 is the MVU

estimator of σ2.

It seems that it would be quite difficult to use (11) to show the
efficiency of

T (X) =
[

X
1
n ·
∑n
i=1X

2
i

]
for estimating

E p(x;θ)[T (X)] = θ =
[

µ
µ2 + σ2

]
.

Therefore, keep Theorem 4 in mind, in addition to (11).
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Gaussian CRB

Theorem 5. Suppose that X has a n-variate Gaussian
distribution,

X ∼ N (µ(θ),C(θ))

that is

p(x;θ) =
1√

(2π)n|C|
exp

[
−1

2(x− µ)TC−1(x− µ)
]
.

Then, the (i, k)th element of the FIM is given by

Ii,k =
∂µT

∂θi
C−1 ∂µ

∂θk
+

1
2
· tr
(
C−1∂C

∂θi
C−1∂C

∂θk

)
.

This is a convenient general formula for analysis.

Proof. See Kay-I, App. 3C. 2

Example: If x[n] = s[n; θ] + w[n] and w[n] is AWGN with
known variance σ2 and n = 1, 2, . . . , N . Then, we can write
this model specification in a vector form:

x = µ(θ) +w ∼ N (µ(θ), σ2

N×N identity matrix︷︸︸︷
I︸ ︷︷ ︸
C

).
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C does not depend on θ (and, furthermore, is completely
known).

I(θ) =
1
σ2

∂µT

∂θ

∂µ

∂θ
=

1
σ2

N−1∑
n=0

(∂s[n; θ]
∂θ

)2

which is the familiar expression that we derived earlier, see p.
19. What if we have a vector of parameters θ? In this case,

Ii,k =
1
σ2

∂µT

∂θi

∂µ

∂θk
=

1
σ2

N−1∑
n=0

∂s[n; θ]
∂θi

∂s[n; θ]
∂θk

.

Example: x[n] = w[n], where w[n], n = 1, 2, . . . , N is AWGN
with variance σ2. If θ = σ2, then

x ∼ N (0, σ2I).

C(θ) = θ I = σ2 I.

I(σ2) =
1
2

tr
(
C−1∂C

∂σ2
C−1∂C

∂σ2

)
=

1
2σ4

tr(I) =
N

2σ4
(12)

and, therefore,

CRB(σ2) = [I(σ2)]−1 =
2σ4

N
. (13)
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Say we wish to compute the CRB for σ:

CRB(σ) = [I(σ)]−1 =
[1
2
· tr
(
C−1∂C

∂σ
C−1∂C

∂σ

)]−1

=
σ2

2N

which can also be computed using (2): ψ(σ2) = (σ2)1/2,
ψ′(σ2) = 1/2 · (σ2)−1/2, and

|ψ′(σ2)|2

I(σ2)
=

(1/4) · σ−2

N/(2σ4)
=

σ2

2N
.

Here, we consider the same measurement model as Example
2 in handout # 1. There, we studied a family of (generally
biased) estimators of σ2:

σ̂2 = a · 1
N

N−1∑
n=0

x2[n]

and found that aOPT = N
N+2 yields an estimator

σ̂2
? = aOPT ·

1
N

N−1∑
n=0

x2[n] =
1

N + 2

N−1∑
n=0

x2[n]

whose MSE is the smallest within the family:

MSEMIN =
2σ4

N + 2
<

2σ4

N
= CRB(σ2)
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see (13). (Note that σ̂2
? is a biased estimator of σ2 whereas

the CRB is the lower bound on variance of unbiased estimators
only.) Let us now apply the information inequality in (2) to the
estimators in this family:

var(σ̂2) ≥ |ψ
′(σ2)|2

I(σ2)
=

2a2 σ4

N

since ψ(σ2) = E [σ̂2] = aσ2 and ψ′(σ2) = a. Now, (4) implies
that

MSE[σ̂2] = var[σ̂2] + [b(σ2)]2 ≥ 2a2 σ4

N
+ (a− 1)2 σ4

since b(σ2) = ψ(σ2)−σ2 = (a−1)σ2. Interestingly, the above
inequality becomes equality for optimal a = aOPT = N

N+2. This
MSE bound is not always attainable — we just happen to be
lucky in this case.
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Asymptotic CRB for WSS Processes

For the definition and properties of wide-sense stationary (WSS)
signals, see handout # 10 for EE 420x (and pay attention to
that handout’s exposition of discrete-time processes, which we
need here.)

The results presented here are based on the Whittle
approximation, see e.g.

P. Whittle, “The analysis of multiple stationary time series,” J.
R. Stat. Soc., Ser. B vol. 15, pp. 125–139, 1953.

Theorem 6. Assume wide-sense stationary Gaussian x[n] is
observed. The power spectral density (PSD) Pxx(f ; θ) depends
on unknown parameter vector θ. Then, for large N , the FIM
is given by

[I]i,k =
N

2

∫ 1/2

−1/2

∂ logPxx(f ;θ)
∂θi

· ∂ logPxx(f ;θ)
∂θk

df. (14)

In practice, the above expression is valid if N � the correlation
time. (Recall: the correlation time of a random process is
the time lag after which we can consider correlation between
measurements negligible.) For stationary processes, it is
often convenient to parametrize the power spectral density.
Computing the exact CRB would require computing (and
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differentiating) the autocorrelation matrix C(θ) which may
not yield simple closed-form solutions.

The discrete-frequency version of the above expression is also
useful:

I(θ) =
1
2

N−1∑
k=0

∂ log[Pxx(fk;θ)]
∂θ

∂ log[Pxx(fk;θ)]
∂θT

(15)

where
fk = k/N, k = 0, 1, . . . , N − 1.

For example, (15) may exist even when (14) does not. An
example of such a case is the Doppler PSD (which goes to
infinity, causing an integrability problem), see

A. Dogandžić and B. Zhang, “Estimating Jakes’ Doppler power
spectrum parameters using the Whittle approximation,” IEEE
Trans. Signal Processing, vol. 53, pp. 987–1005, Mar. 2005.

For scalar parameters

I(θ) =
N

2

∫ 1/2

−1/2

(∂ logPxx(f ; θ)
∂θ

)2

df.

Example 3.12 in Kay-I: Estimate the center frequency of a
narrowband process:

Pxx(f ; fc) = Q(f − fc) +Q(−f − fc) + σ2
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where Q is a known function and σ2 is AWGN variance. fc
takes values so that Q(f − fc) is always within [0, 1/2]. In our
case, the asymptotic CRB expression simplifies to

CRB(fc) =
1

N
∫ 1/2

−1/2

(
∂ log[Q(f)+σ2]

∂f

)2

df
.

For Q(f) = exp[−1
2 (f/σ2

f)], σf � 1
2 (i.e. narrowband random

process), and Q(f) � σ2 (high SNR), we have

var(f̂c) ≥
12σ4

f

N
.

The narrower the PSDs (smaller σ2
f), the better the accuracy.

Example: Range estimation, Kay-I, Example 3.13.
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Digression: Complex Signals

Narrowband signal:

s(t) = A(t) cos(ω0t+ φ(t))

where A(t) and φ(t) vary slowly compared to cos(ω0t).

Complex representation (analytic signal)

s̃(t) = A(t)ejφ(t)

can be generated using quadrature sampling.

In general: real band-pass signal can be represented as a
complex low-pass signal (and sampled at a slower rate).

There is a need to process complex data, particularly in

• communications,

• radar/sonar,

• eddy-current nondestructive evaluation (NDE) etc.

A complex scalar is a 2-vector! We could work with real signals
of twice the dimension, but it is customary to use the complex
representation.
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Complex Gaussian Distribution

Consider joint pdf of real and imaginary part of a complex
vector x:

x = u+ jv.

Assume z = [uT ,vT ]T . The 2n-variate Gaussian pdf of the
(real!) vector z is

pz(z) =
1√

(2π)2n|C|
exp

[
−1

2(z − µz)
TC−1(z − µz)

]
where

µz =
[
µu
µv

]
, C =

[
Cuu Cuv

Cvu Cvv

]
.

That is

P{z ∈ A} =
∫
z∈A

pz(z) dz.
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Complex Gaussian Distribution (cont.)

Suppose that C has a special structure:

Cuu = Cvv and Cuv = −Cvu.

(Note that Cuv = CT
vu by construction.) Then, we can define

a complex Gaussian pdf:

pX(x) =
1

πn|Cx|
exp

[
−(x− µx)HC

−1
x (x− µx)

]
where “H” denotes a complex conjugate transpose and

µx = µu + jµv

Cx = E {(x− µx)(x− µx)H} = 2 (Cuu + jCvu)

0 = E {(x− µx)(x− µx)T}.

The (i, j)th element of the FIM for x ∼ Nc(µ(θ), C(θ)) is
given by

Ii,j = 2Re
{
∂µH

∂θi
C−1 ∂µ

∂θj

}
+ tr

(
C−1∂C

∂θi
C−1∂C

∂θj

)
see Kay-I, p. 525 — the proof is given in Appendix 15C of
Kay-I.
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Eddy-Current NDE Example
(Crack Profile Inversion)

Coil above a conductor containing an open slot.

We adopt a complex deterministic signal-in-AWGN model:

x[n] = s[n,θ] + w[n], n = 1, 2, . . . , N

where

• x[n] ≡ complex eddy-current impedance measurements
collected at N locations (i.e. index n corresponds to a
measurement location),

• θ ≡ parameter vector describing the crack profile,

• s[n,θ] ≡ model predictions for the crack profile described
by θ. and
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• additive complex white Gaussian noise (CWGN) with
variance σ2.

In

J.R. Bowler, W. Zhang, and A. Dogandžić, “Application of
optimization methods to crack profile inversion using eddy
current data,” in Rev. Progress Quantitative Nondestructive
Evaluation, D.O. Thompson and D.E. Chimenti (Eds.), Melville
NY: Amer. Inst. Phys., vol. 22, 2003, pp. 742–749,

We utilize ML method to estimate θ. (In this case, ML
estimation ⇐⇒ nonlinear least-squares estimation).

Nonlinear least-squares inversion of experimental impedance
data to determine the crack shape using two optimization
methods. We will discuss nonlinear least squares later in class.
Let us focus here on the CRB.
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CRB as a Tool for System Design

CRB vs. Frequency

Assume the noise variance σ2 is constant across all the
frequencies from 250 Hz to 8 kHz.

trCRB(θ)/σ2 vs. frequency for crack depths 15 and 8 mm.

In the frequency domain in which our theory model is valid, the
higher frequency the inversion is made at, the more accurate
the inversion can be. As for different crack depths, the deeper
the crack depth is, the larger the estimation error tends to be,
which can be easily explained by the skin depth effect. Hence,
to get better result, perform the inversion at as high frequency
as possible.
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CRB vs. Liftoff

Here, we assume that the noise variance σ2 is constant across
all liftoffs.

trCRB(θ)/σ2 vs. liftoff for crack depths 15 and 8 mm.

det[CRB(θ)/σ2] vs. liftoff for crack depths 15 and 8 mm.

(Approximately) exponential behavior of the CRB with liftoff.
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