
(A Quick) Probability Review

Reading:

• Go over handouts 2–5 in EE 420x notes.

Basic probability rules:

(1) P [Ω ] = 1, P [∅] = 0, 0 ≤ P [A] ≤ 1;
P [∪∞i=1Ai] =

∑∞
i=1 P [Ai] if Ai ∩Aj︸ ︷︷ ︸

Ai and Aj disjoint

= ∅ for all i 6= j;

(2) P [A ∪B] = P [A] + P [B]− P [A ∩B], P [Ac] = 1− P [A];

(3) If A ⊥⊥ B, then P [A ∩B] = P [A] · P [B];

(4)

P [A |B] =
P [A ∩B]

P [B]
(conditional probability)

or

P [A ∩B] = P [A |B] · P [B] (chain rule);
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(5)
P [A] = P [A |B1]P [B1] + · · ·P [A |Bn]P [Bn]

if B1, B2, . . . , Bn form a partition of Ω ;

(6) Bayes rule:

P [A |B] =
P [B |A]P [A]

P [B]
;

(7)

E [aX + bY + c] = a · E [X] + b · E [Y ] + c

var(aX + bY + c) = a2 var(X) + b2 var(Y )

+2 a b · cov(X, Y )

where a, b, and c are constants and X and Y are random
variables.

(7’) A vector/matrix version of (7):

E [A X + B Y + c] =A E [X] + B E [Y ] + c

cov(A X + B Y + c) =A cov(X) AT + B cov(Y ) BT

+A cov(X,Y ) BT + B cov(Y ,X) AT

where “T” denotes a transpose and

cov(X,Y ) = E {(X − E [X]) (Y − E [Y ])T}.
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(To refresh memory about covariance and its properties, see p.
12 of handout 5 in EE 420x notes. For random vectors, see
handout 7 in EE 420x notes, particularly pp. 1–15.)

Some useful theorems:

(1) (handout 5 in EE 420x notes)

E [X] = E Y [E X|Y [X |Y ]]

E [g(X) · h(Y ) |Y = y] = h(y) · E [g(X) |Y = y]

E [g(X) · h(Y )] = E [h(Y ) · E [g(X) |Y ]];

The vector version of (1) is the same — just put bold letters.

(2)
var(X) = E [var(X |Y )] + var(E [X|Y ]);

The vector/matrix version of (2) is:

(2’)

cov(X)︸ ︷︷ ︸
variance/covariance

matrix of X

= E [cov(X |Y )] + cov(E [X|Y ]);
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(3)

cov(X, Y ) = E [cov(X, Y |Z)] + cov(E [X|Z],E [Y |Z]).

(4) Transformation:

Y = g(X) ⇐⇒
Y1 = g1(X1, . . . , Xn)

...
Yn = gn(X1, . . . , Xn)

then
pY (y) = pX(h1(y1), . . . , hn(yn)) · |J |

where h(·) is the unique inverse of g(·) and

J =
∣∣∣ ∂x

∂yT

∣∣∣ =

∣∣∣∣∣∣∣
∂x1
∂y1

· · · ∂x1
∂yn... ... ...

∂xn
∂y1

· · · ∂xn
∂yn

∣∣∣∣∣∣∣
Print and read the handout “Probability distributions” from
the Supplementary material section on WebCT. Bring it with
you to the midterm exam.
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Estimator Performance

We now continue with the DC-level estimation example from
handout # 0.

This handout describes the “classical world” and, therefore,
arguments are made in this context. Bayesian arguments will
be somewhat different.

Consider the following two estimators:

Â1 =
1
N

N−1∑
n=0

x[n]

Â2 = x[0].

Note that Â1 is the ML estimate of A — it maximizes the
likelihood function, see handout # 0. (Interestingly, the ML
estimate of A is the same regardless of whether σ2 is known or
not.) It is also intuitively appealing — A is the average level
of x[n] (since w[n] is zero mean).

Which estimator is better?

For a given realization, it is possible that either Â1 or Â2 is
closer to A. Hence, we need statistical analysis to answer this
question.
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Estimator Performance (cont.)

Substitute the measurement model to perform statistical
analysis. We have

Â1 =
1
N

N−1∑
n=0

{A + w[n]}

Â2 = A + w[0].

Take expectation:

E x[Â1] =
1
N

N−1∑
n=0

(A +
0︷ ︸︸ ︷

E {w[n]}) = A

E x[Â2] = A +
0︷ ︸︸ ︷

E {w[n]} = A.

On average, both estimators are around the correct value (i.e.
they are unbiased).
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Estimator Performance (cont.)

Histograms of bA1 and bA2.

But Â1 is better than Â2 because its pdf is more concentrated
around the true value.

“On average, Â1 is closer to A = 1.”

Proof.

E x[Â1] = E [Â2] = A

varx(Â1) = E [(Â1 −
A︷ ︸︸ ︷

E [Â1])2] =
1

N2

N−1∑
n=0

varx(w[n]) =
σ2

N

varx(Â2) = σ2.

2
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But, what is the justification for taking these expectations? We
implicitly assume that we could repeat this experiment many
times and plot the histogram (say) of the resulting estimates.
This is what Bayesians criticize saying that, in the classical
approach, “data that have never been observed are used for
inference.” (As you can guess, Bayesians do not need this
virtual-data argument.) Suppose we are fine with the classical
argument and let us continue.
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Which Estimator is the Best?

Notation. Bias and mean-square error (MSE) of estimator θ̂:

b(θ) = E x[θ̂]− θ

MSE(θ̂) = E x[(θ̂ − θ)2] = var(θ̂) + b(θ)2.

We wish to minimize the MSE, which leads to an MMSE
estimator. MSE expression:

MSE(θ̂) = E x[(θ̂ − E x[θ̂] + E x[θ̂]− θ)2]

= E x[(θ̂ − E x[θ̂])2]︸ ︷︷ ︸
var(bθ)

+(E x[θ̂]− θ)2︸ ︷︷ ︸
b(θ)2

+2E x[(θ̂ − E x[θ̂]) · (E x[θ̂]− θ)︸ ︷︷ ︸
const︸ ︷︷ ︸

0

]
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Note that the above MSE(θ̂) is different from Bayesian MSE.
Since in Bayesian inference we assign a prior distribution to θ,
Bayesian MSE would be obtained by taking the expectation of
MSE(θ̂) with respect to θ.

In the classical setup, minimizing the MSE is our key objective,
but the use of this criterion leads to unrealizable estimators
=⇒ MSE(θ̂) = var(θ̂) + b(θ)2 is a strong function of θ and
minimizing it over some family of estimators will usually produce
an “optimal” estimator θ̂ that depends on θ.

Example 1. DC level in Additive White Gaussian Noise
(AWGN), see also Section 2.4 in Kay-I:

x[n] = A + w[n]︸︷︷︸
AWGN

w[n] ∼ N (0, σ2), n = 0, 1, . . . , N − 1.

Consider the following family of estimators of A:

Ǎ = a x

where

x = (1/N)
N−1∑
n=0

x[n] (sample mean).

Here
E [Ǎ] = aA, var(Ǎ) = a2σ2/N.
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Find the best a (that minimizes the MSE for the given family).
In other words, can we improve upon the sample mean?

MSE(Ǎ) = a2σ2/N +

depends on A︷ ︸︸ ︷
(aA−A)2

dMSE
da

= 2aσ2/N + 2(aA−A)A = 0

aopt =
A2

A2 + σ2/N

depends on the unknown parameter A. Hence not useful (at
least not directly). Observe the “shrinkage” form of the above
“estimator.”
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Minimum Variance Unbiased
(MVU) Estimation

How do we construct a “realizable” estimator?

An idea: Constrain the bias to be zero and then minimize the
estimator variance (which is equal to MSE in this scenario since
the bias is zero) for all values of θ =⇒ MVU estimator.

MVU estimator does not always exist, as θ̂ must have smallest
variance for all values of θ.1

1To emphasize the fact that the MVU estimator must have the smallest variance for
all values of θ, B & D refer to it as uniformly minimum variance unbiased (UMVU).
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Comments:

• Even if it exists for a particular problem, MVU estimator is
not optimal in terms of minimizing the MSE and we may be
able to do better.

• Unbiasedness is nice, but not the most important =⇒ we can
relax this condition and consider biased estimators as well,
e.g. by making them asymptotically unbiased. By relaxing
the unbiasedness condition, it is possible to outperform the
MVU estimators in terms of MSE, as shown in the following
example. What we really care about is minimizing the MSE!

Example 22. Consider now estimating the variance σ2 of
independent, identically distributed (i.i.d.) zero-mean Gaussian
observations, using the following estimator:

σ̂2 = a · 1
N

N−1∑
n=0

x2[n] (1)

where a > 0 is variable. If we choose a = 1, σ̂2
∣∣
a=1

will be

unbiased3 with

σ̂2
∣∣
a=1

= σ̂2
MVU =

1
N

N−1∑
n=0

x2[n]. (2)

2See also P. Stoica and R. Moses, “On biased estimators and the unbiased Cramér-Rao
lower bound,” Signal Processing, vol. 21, pp. 349–350, 1991.

3We will show later that this choice yields an MVU estimate.
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Now, in general,

E [σ̂2] = a σ2

and

MSE(σ̂2) = E [(σ̂2 − σ2)2]

= E [σ̂4] + σ4 − 2σ2 E [σ̂2]

= E [σ̂4] + σ4 (1− 2a)

=
a2

N2

N−1∑
n1=0

N−1∑
n2=0

E {x2[n1]x2[n2]}

+σ4 (1− 2a)

=
a2

N2
[(N2 −N) σ4 + N · E {x4[n]}︸ ︷︷ ︸

3σ4

) + σ4 (1− 2a)

= σ4 ·
[
a2(1 +

2
N

) + (1− 2a)
]
. (3)

To evaluate the above expression, we have used the following
facts:

• For n1 6= n2, E {x2[n1]x2[n2]} = E {x2[n1]} · E {x2[n2]} =
σ2 · σ2 = σ4.

• For n1 = n2, E {x2[n1]x2[n2]} = E {x4[n1]} = 3σ4 (which
is the fourth-order moment of a Gaussian distribution).
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It can be easily shown that (3) is minimized for

aOPT =
N

N + 2

yielding the estimator

σ̂2
? = aOPT ·

1
N

N−1∑
n=0

x2[n]

whose MSE

MSEMIN =
2 σ4

N + 2
.

is minimum for the family of estimators in (1).

Comments:

• σ̂2
? is biased and has smaller MSE than the MVU estimator

in (2):

MSEMIN < MSE(σ̂2)
∣∣∣
a=1

=
2 σ4

N
.

• Note that we are able to construct an realizable estimator
in this case — compare with Example 1 in this handout.

• For large N , σ̂2
? and σ̂2

MVU are approximately the same since
N/(N + 2) → 1 as N → ∞. This also implies that σ̂2

? is
asymptotically unbiased.
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Note: I do not wish to completely dismiss bias considerations.
For example, we may have two estimators θ̂1 and θ̂2 with

[bias(θ̂1)]2 � var(θ̂1) and [bias(θ̂2)]2 � var(θ̂2)

and
MSE(θ̂1) ≈ MSE(θ̂2).

So, these two estimators are “equally good” as far as MSE is
concerned. But, we may have

|bias(θ̂1)| � |bias(θ̂2)|

making θ̂1 “more desirable” than θ̂2. Bias correction methods
have been developed for constructing estimators that have
small bias. Hence, having small bias is typically a second-tier
concern (compared with minimizing the MSE), but a valid one,
particularly in the scenario outlined in this comment.
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Sufficiency

Reading:

• Kay-I, chs. 5.3–5.4.

A function T (x) of the observations x only is called a statistic.

Example: A machine produces n items in succession with
probability θ of producing a defective product. Suppose that
there is no dependence in quality of the produced items.

Then, our statistical model is

p(x |θ) =
n∏

i=1

θxi(1− θ)1−xi = θ
Pn

i=1 xi(1− θ)n−
Pn

i=1 xi.

Is there any loss of information by keeping and recording only
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∑n
i=1 xi? Answer: Yes, we are dropping a lot of information. But

No, in terms of inference about θ
(provided that the model is correct, of course).

We typically wish to separate out any aspects of the data
that are irrelevant in the context of our model. In other
words, we would like to reduce the data and deal only with
the statistics “whose use involves no loss of information.”
For example, we could save memory and store only the
reduced data. What we mean by “no loss of information”
is quantified in the following definition.

Definition. T = T (x) is a sufficient statistic for θ if the
conditional distribution of X given T (X) = T does not involve
θ:

p(x |T (x) = t; θ) = p(x |T (x) = t).

Think of sufficient statistics as not throwing away any useful
information about θ.

Note: if X is a random variable (RV), then T = T (X) is a
RV.

Trivial example: T (x) = x =⇒ full data is always sufficient.

Example: Let us continue with the previous example. Here,
X = [X1, . . . , Xn]T is the record of n Bernoulli trials with
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probability θ, which can be written as

P{Xi = xi} = θxi(1− θ)1−xi.

where xi is 1 (defective) or 0 (not defective). Thus

P{X = x} = P{X1 = x1, . . . , Xn = xn} = θt(1− θ)n−t

where t =
∑n

t=1 xi. Now, T =
∑n

t=1 Xi has a binomial
distribution Bin(n, θ) and

p(x|T (x) = t; θ) = P{X = x |T (X) = t}

=
P{X = x, T (X) = t}(

n
t

)
θt(1− θ)n−t

=


0, if

T (x)︷ ︸︸ ︷
n∑

t=1

xi 6= t

θt(1−θ)n−t

(n
t) θt(1−θ)n−t = 1

(n
t)

, otherwise

which is clearly not a function of θ. Here, we have used the
(general) fact that

{X = x} ⊂ {T (X) = T (x)}. (4)

Thus, T (x) =
∑n

t=1 xi is a sufficient statistic for θ.
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In general, directly checking sufficiency is difficult because we
need to compute the conditional distribution. Fortunately, we
have the following theorem whose conditions are easy to verify.

Theorem. (Factorization Theorem) A statistic T (X) is
sufficient for θ if and only if there exists a function g(t, θ) and
a function h(x) such that

p(x; θ) = g(T (x), θ)︸ ︷︷ ︸
parameters

coupled with
suff. stat.

·h(x).

Note: T (x) must be a statistic, a function of data x only.

Proof. To illustrate the idea of the proof and for simplicity,
we concentrate on the discrete case. Suppose that T (X) is
sufficient. Then

p(x ; θ) =
P{X=x}, see (4)︷ ︸︸ ︷

P{X = x, T (X) = T (x)}
= P{T (X) = T (x)} P{X = x |T (X) = T (x)}︸ ︷︷ ︸

h(x), by sufficiency

= g(T (x), θ) h(x).
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Conversely,

P{X = x |T (X) = T (x)} =
P{X = x, T (X) = T (x)}

P{T (X) = T (x)}

=

p(x ; θ)︷ ︸︸ ︷
P{X = x}

P{T (X) = T (x)}︸ ︷︷ ︸P
y:T (y)=T (x) p(y;θ)

=

by the assumption︷ ︸︸ ︷
g(T (x), θ) h(x)∑

y:T (y)=T (x) g(T (y), θ) h(y)︸ ︷︷ ︸
by the assumption

=
g(T (x), θ) h(x)

g(T (x), θ)
∑

y:T (y)=T (x) h(y)

=
h(x)∑

y:T (y)=T (x) h(y)

which is not a function of θ. 2

Example: Suppose x1, x2 . . . , xn, are i.i.d. N (µ, σ2). Let
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θ = [µ, σ2]T . Then

p(x1, . . . , xn;θ) = (2πσ2)−n/2 exp
{
− 1

2σ2

n∑
i=1

(xi − µ)2
}

= (2πσ2)−n/2 exp{−nµ2

2σ2
} exp

{
− 1

2σ2

( n∑
i=1

x2
i − 2µ

n∑
i=1

xi

)}
.

Clearly, p(x1, . . . , xn;θ) is itself a function of
∑n

i=1 xi,∑n
i=1 x2

i , and θ only and, upon applying the factorization
theorem, we conclude that

T (x) = T (x1, x2, . . . , xn) =
[ ∑n

i=1 xi∑n
i=1 x2

i

]

is sufficient for θ. Here, h(x) is trivial: h(x) = 1.

An equivalent (frequently used) sufficient statistic is

T (x) = T (x1, x2, . . . , xn) =
[

1
n

∑n
i=1 xi

1
n−1

∑n
i=1(xi − x̄)2

]

where x̄ = 1
n

∑n
i=1 xi. This sufficient statistics can be

obtained by suitably arranging the terms in the expression
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for p(x1, . . . , xn;θ):

p(x1, . . . , xn;θ) = (2πσ2)−n/2

· exp
{
− 1

2σ2

n∑
i=1

[(xi − x̄) + (x̄− µ)]2
}

and expanding the squares in the exponent.

Example. Suppose x1, x2, . . . , xn, are i.i.d. N (θ, 1). Then

p(x; θ) = exp{nθ(x̄− 1
2θ)} · (2π)−

1
2n exp{−1

2

n∑
i=1

x2
i}︸ ︷︷ ︸

h(x)

.

So, x̄ is sufficient by the factorization theorem.

EE 527, Detection and Estimation Theory, # 1 23



A Side Note on Multivariate Gaussian Pdf

An example (similar to the one in handout # 0). Consider
w[n] white Gaussian noise with unit variance:

w[n] ∼ N (0, 1)︸ ︷︷ ︸
univariate standard normal pdf

, n = 1, . . . , d

implying

p(w[1], . . . , w[d]) =
d∏

n=1

p(w[n])

=
1

(
√

2π)d
· exp

(
− 1

2 ·
d∑

n=1

w[n]2
)
.

This expression can be succinctly written as

p(w) =
1

(
√

2π)d
exp

(
− 1

2 wTw
)

︸ ︷︷ ︸
multivariate standard normal pdf

4
= N (0, I)

where

w =


w[1]
w[2]

...
w[d]

 .
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We can generalize:

Definition. A random d × 1 vector X has a multivariate
Gaussian pdf, denoted by

X ∼ N ( µ︸︷︷︸
E [X]

, Σ︸︷︷︸
cov(X)

)

if its pdf is of the form:

p(x;µ,Σ ) =
1√

(2π)d |Σ |
exp

[
−1

2 (x− µ)TΣ−1(x− µ)
]

where |Σ | ≡ determinant of Σ , µ is a d × 1 vector, and Σ is
a d× d symmetric positive definite matrix.

Since Σ is symmetric and positive definite, it can be shown that
there exists a matrix Σ 1/2 called the square root of Σ with the
following properties: (i) Σ 1/2 is symmetric, (ii) Σ = Σ 1/2Σ 1/2,
and (iii) Σ 1/2Σ−1/2 = I, where Σ−1/2 = (Σ 1/2)−1.

Theorem. If W ∼ N (0, I) and

X = µ + Σ 1/2 W

then
X ∼ N (µ,Σ ).
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Conversely, if X ∼ N (µ,Σ ), then

Σ−1/2 (X − µ) ∼ N (0, I).

Suppose that we partition a random d× 1 vector X as

X =
[

Xa

Xb

]
.

We can partition µ and Σ accordingly:

µ =
[

µa

µb

]
, Σ =

[
Σaa Σab

Σba Σbb

]
.

Theorem. If X ∼ N (µ,Σ ) then

(i) The marginal distribution of Xa is

Xa ∼ N (µa,Σaa).

(ii) The conditional distribution of Xb given Xa = xa is

Xb |Xa = xa ∼ N
(
µb+ΣbaΣ−1

aa (xa−µa),Σbb−ΣbaΣ−1
aa Σab

)
.
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(iii) If a is a constant d× 1 vector, then

aTX ∼ N (aTµ,aTΣa).

(iv)

(x−µ)TΣ−1(x−µ) ∼ χ2
d (Chi-square in your distr. table).

Example: Two Jointly Gaussian RVs

We plot contours of the joint pdf pX,Y (x, y) for zero-mean
jointly Gaussian RVs for various values of σX, σY , and ρx,y,
where we have parametrized pX,Y (x, y) as

pX,Y (x, y) =
1

2πσXσY

√
1− ρ2

X,Y

· exp

{
− 1

2(1− ρ2
X,Y )

·
[(x− µX)2

σ2
X

+
(y − µY )2

σ2
Y

−2 ρX,Y
(x− µX)(y − µY )

σXσY

]}
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with

ρX,Y︸ ︷︷ ︸
correlation coefficient

=
cov(X, Y )√
var(X)var(Y )

=
cov(X, Y )

σX σY
.
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Example (Digital Communications)

x(t) = s(t)︸︷︷︸
signal

+ w(t)︸︷︷︸
noise

where the signal s(t) is usually represented using orthonormal
basis functions ϕk(t):

s(t) =
K∑

k=1

αk ϕk(t).

Note: The signal s(t) is unknown, but it has known structure,
incorporated in this basis-function expansion. We wish to use
this structure for data reduction.

If ϕk(t) are orthonormal, it is easy to show that the coefficients
αk can be computed as (for the case of real data):

αk =
∫

s(t) ϕk(t) dt.

Here, our goal at the receiver is to decide which s(t) (αk’s)
has been transmitted.

What is typically done in communication receivers is the
following: the received data x(t) are matched to the basis
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functions, i.e.

α̂k =
∫

x(t) ϕk(t) dt, k = 1, 2, . . . ,K (5)

are computed and utilized for demodulation.

Question: Are the α̂ks sufficient statistics for inference about
s(t) (or, more precisely, for inference on the αks)?

Note: In some applications, sampled data x[n], n =
0, 1, . . . , N − 1 are available and

α̂k =
N−1∑
n=0

x[n]ϕk[n], k = 1, 2, . . . ,K

are used to approximate the integrals in (5) (up to a scaling
factor). We focus on this scenario, having in mind that we can
easily switch from sums to integrals by letting the sampling
interval go to zero — then N will go to infinity. Clearly, N is
much larger than the number of basis functions K, i.e.

K � N.

In the sampled-data case, our model is

x[n] = s[n]︸︷︷︸
signal

+ w[n]︸︷︷︸
noise
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where

s[n] =
K∑

k=1

αk ϕk[n].

Define

x =


x[0]
x[1]

...
x[N − 1]

 , w =


w[0]
w[1]

...
w[N − 1]

 , µ(α) =


s[0]
s[1]
...

s[N − 1]


and

α =


α1

α2
...

αK


implying

x = µ(α) + w.

If the noise is additive zero-mean Gaussian with covariance
matrix E [wwT ] = C, then

x ∼ N (µ(α),C)

which is a multivariate Gaussian pdf:

p(x;α) =
1√

(2π)n|C|
exp

{
−1

2 [x− µ(α)]TC−1[x− µ(α)]
}

(6)
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and

µ(α) =


s[0]
s[1]
...

s[N − 1]

 =


∑K

k=1 αk ϕk[0]∑K
k=1 αk ϕk[1]

...∑K
k=1 αk ϕk[N − 1]

 = Fα

where

F =

 ϕ1(0) ϕ2(0) · · · ϕK(0)
... ... . . . ...

ϕ1(N − 1) ϕ2(N − 1) · · · ϕK(N − 1)


is an N ×K matrix. So

p(x;α) =
1√

(2π)n|C|
· exp

{
−1

2(x− Fα)TC−1(x− Fα)
}

.

What are the sufficient statistics for inference on α? It depends
on our knowledge about C. If C is unknown, we clearly cannot
separate out any non-trivial sufficient statistics for both α and
C. If C is known, then the vector of sufficient statistics for α
is

F TC−1x (7)

which is a K × 1 vector. Since, K � N , (7) achieves
dimensionality reduction compared with the raw data x. Note

EE 527, Detection and Estimation Theory, # 1 34



that, if C is unknown, we cannot compute (7) =⇒ not
realizable.

If C = σ2I (i.e. the noise is white) and the noise variance σ2

is known, then (7) simplifies to (up to a known proportionality
factor):

F Tx =


∑N−1

n=0 ϕ1[n]x[n]∑N−1
n=0 ϕ2[n]x[n]

...∑N−1
n=0 ϕK[n]x[n]

 =


α̂1

α̂2
...

α̂K

 .

If σ2 is unknown, then

p(x;α) =
1√

(2πσ2)n
· exp

{
− 1

2σ2
(x− Fα)T (x− Fα)

}
.

where σ2 and α ≡ parameters and x ≡ data. Now

xTx =
N−1∑
n=0

x2[n] and F Tx =


α̂1

α̂2
...

α̂K


are jointly sufficient for α and σ2.
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Examples: Computing the Sufficient Statistics

Example: Suppose that elements of x = [x1, x2, . . . , xn]T

are i.i.d. inter-arrival times of packets arriving at a node in a
communication network.

We assume that xi, i = 1, 2, . . . , n come from an exponential
Expon(θ) distribution, implying

p(x ; θ) =
n∏

i=1

θ exp(−θxi) = θn exp
(
− θ

n∑
i=1

xi︸ ︷︷ ︸
T (x)

)
, ∀xi ≥ 0.

Example: Elements of x = [x1, x2, . . . , xn]T are i.i.d.
uniform(0, θ):

p(x; θ) =
1
θn

n∏
i=1

i[0,θ](xi) =
1
θn

i[−∞,θ](
T (x)︷ ︸︸ ︷max xi)︸ ︷︷ ︸

g(T (x),θ)

· i[0,∞](minxi)︸ ︷︷ ︸
h(x)

where iA(x) denotes the indicator function:

iA(x) =
{

1, x ∈ A,
0, otherwise
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Here, we have used the facts that

x1, x2, . . . , xN < θ ⇐⇒ max xi < θ

and
x1, x2, . . . , xN > 0 ⇐⇒ minxi > 0.

Example. Detection problem: θ ∈ {0, 1} and

p(x; θ) = θ p(x; 1) + (1− θ) p(x; 0)

=
[
θ

T (x)︷ ︸︸ ︷
p(x; 1)
p(x; 0)

+(1− θ)
]

︸ ︷︷ ︸
g(T (x),θ)

p(x; 0)︸ ︷︷ ︸
h(x)

T (x) is the likelihood ratio! It is a very useful sufficient
statistics because it is one-dimensional regardless of the nature
of p(x; θ). See also Poor, Example IV.C.1.

Definition. The statistic T (x) is minimally sufficient if it is
sufficient and provides a greater reduction of the data than any
other sufficient statistic S(x).
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(Multiparameter) Exponential Family of
Distributions

p(x;θ) = h(x) exp
[ k∑

i=1

ηi(θ) Ti(x)−B(θ)
]

︸ ︷︷ ︸
coupling between

parameters and data has
a very specific form

By the factorization theorem, T (X) = [T1(X), . . . , Tk(X)]T is
sufficient. It is the natural sufficient statistic of the family. The
exponential family is important:

• It covers quite a few useful distributions, including some that
are fairly complex; e.g. Markov random fields, used in image
analysis, are virtually all in the exponential-family form;

• It is popular in graphical models as well (Markov random
fields again);

• Many methods greatly simplify in the case of exponential
family, e.g. the EM algorithm (to be discussed later).

If the support of p(x; θ) depends on θ, then p(x; θ) cannot
belong to the exponential family. For example, uniform(0, θ)
is not a member of the exponential family.
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Multiple i.i.d. measurements making x = [x1, x2, . . . , xn]T .
Then,

p(x; θ) =
n∏

l=1

{
h(xl) exp

[ k∑
i=1

ηi(θ) Ti(xl)−B(θ)
]}

=
[ n∏

l=1

h(xl)
]
· exp

[ k∑
i=1

ηi(θ)
n∑

l=1

Ti(xl)− nB(θ)
]

︸ ︷︷ ︸
again the exponential family

and hence the vector of natural sufficient statistics is

T (X) =

[
n∑

l=1

T1(Xl), . . . ,
n∑

l=1

Tk(Xl)

]T

.

For more about exponential families, see B & D, Chapter 1.6.
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A Side Note on One-Parameter Canonical
Exponential Family

Here is a simple special sub-family of the exponential family —
the one-parameter canonical exponential family:

p(x; η) = h(x) exp
[

η︸︷︷︸
scalar

canonical
parameter

T (x)−A(η)
]

where

A(η) = log
∫
· · ·

∫
h(χ) exp[η T (χ)] dχ for a pdf p(x; η)

A(η) = log
∑
χ

h(χ) exp[η T (χ)] for a pmf p(x; η).

If we can compute the normalizing term A(η) in a simple form,
then it is easy to find the mean and variance of T (X):

E p(x;η)[T (X)] =
dA(η)

dη
, varp(x;η)[T (X)] =

d2A(η)
dη2

.

Why is this useful? Here is an example. Suppose
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x1, x2, . . . , xn are i.i.d. from

p(x; θ) =
x

θ2
· exp

(
− x2

2θ2

)
, x > 0, θ > 0︸ ︷︷ ︸

Rayleigh pdf

.

Define x = [x1, x2, . . . , xn]T and write the pdf of x:

p(x; θ) =
n∏

i=1

[xi

θ2
· exp

(
− x2

i

2θ2

)]
=

( n∏
i=1

xi

)
· exp

[ −1
2θ2︸︷︷︸

η

· (
n∑

i=1

x2
i )︸ ︷︷ ︸

T (x)

−n log θ2
]

implying

θ2 = − 1
2η

and, consequently,

A(η) = −n log(−2η).

Therefore, the natural sufficient statistic T (X) =
∑n

i=1 X2
i

has mean

E
[ n∑

i=1

X2
i

]
=

dA(η)
dη

= −n

η
= 2n θ2
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and variance

var
[ n∑

i=1

X2
i

]
=

d2A(η)
dη2

=
n

η2
= 4n θ4.

Direct computation of these moments would be more
complicated.
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