A Probability Review

Outline:

- A probability review.

Shorthand notation: RV stands for random variable.

A Probability Review

Reading:

- Go over handouts 2-5 in EE 420x notes.

Basic probability rules:

(1) $\operatorname{Pr}\{\Omega\}=1, \operatorname{Pr}\{\emptyset\}=0,0 \leq \operatorname{Pr}\{A\} \leq 1$; $\operatorname{Pr}\left\{\cup_{i=1}^{\infty} A_{i}\right\}=\sum_{i=1}^{\infty} \operatorname{Pr}\left\{A_{i}\right\}$ if $\underbrace{A_{i} \cap A_{j}}_{A_{i} \text { and } A_{j} \text { disjoint }}=\emptyset$ for all $i \neq j$;
(2) $\operatorname{Pr}\{A \cup B\}=\operatorname{Pr}\{A\}+\operatorname{Pr}\{B\}-\operatorname{Pr}\{A \cap B\}, \operatorname{Pr}\left\{A^{\mathrm{c}}\right\}=$ $1-\operatorname{Pr}\{A\}$;
(3) If $A \Perp B$, then $\operatorname{Pr}\{A \cap B\}=\operatorname{Pr}\{A\} \cdot \operatorname{Pr}\{B\}$;
(4)

$$
\operatorname{Pr}\{A \mid B\}=\frac{\operatorname{Pr}\{A \cap B\}}{\operatorname{Pr}\{B\}} \quad \text { (conditional probability) }
$$ or

$$
\operatorname{Pr}\{A \cap B\}=\operatorname{Pr}\{A \mid B\} \cdot \operatorname{Pr}\{B\} \quad \text { (chain rule) }
$$

(5)

$$
\begin{aligned}
& \operatorname{Pr}\{A\}=\operatorname{Pr}\left\{A \mid B_{1}\right\} \operatorname{Pr}\left\{B_{1}\right\}+\cdots+\operatorname{Pr}\left\{A \mid B_{n}\right\} \operatorname{Pr}\left\{B_{n}\right\} \\
& \text { if } B_{1}, B_{2}, \ldots, B_{n} \text { form a partition of the full space } \Omega ;
\end{aligned}
$$

(6) Bayes' rule:

$$
\operatorname{Pr}\{A \mid B\}=\frac{\operatorname{Pr}\{B \mid A\} \operatorname{Pr}\{A\}}{\operatorname{Pr}\{B\}} .
$$

Reminder: Independence, Correlation and Covariance

For simplicity, we state all the definitions for pdfs; the corresponding definitions for pmfs are analogous.

Two random variables X and Y are independent if

$$
f_{X, Y}(x, y)=f_{X}(x) \cdot f_{Y}(y)
$$

Correlation between real-valued random variables X and Y :

$$
\mathrm{E}_{X, Y}\{X Y\}=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x y f_{X, Y}(x, y) d x d y
$$

Covariance between real-valued random variables X and Y :

$$
\begin{aligned}
& \operatorname{cov}_{X, Y}(X, Y)=\mathrm{E}_{X, Y}\left\{\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right\} \\
& \quad=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right) f_{X, Y}(x, y) d x d y
\end{aligned}
$$

where

$$
\begin{aligned}
& \mu_{X}=\mathrm{E}_{X}(X)=\int_{-\infty}^{+\infty} x f_{X}(x) d x \\
& \mu_{Y}=\mathrm{E}_{Y}(Y)=\int_{-\infty}^{+\infty} y f_{Y}(y) d y
\end{aligned}
$$

Uncorrelated random variables: Random variables X and Y are uncorrelated if

$$
\begin{equation*}
c_{X, Y}=\operatorname{cov}_{X, Y}(X, Y)=0 \tag{1}
\end{equation*}
$$

If X and Y are real-valued RV s, then (1) can be written as

$$
\mathrm{E}_{X, Y}\{X Y\}=\mathrm{E}_{X}\{X\} \mathrm{E}_{Y}\{Y\} .
$$

Mean Vector and Covariance Matrix:

Consider a random vector

$$
\boldsymbol{X}=\left[\begin{array}{c}
X_{1} \\
X_{2} \\
\vdots \\
X_{N}
\end{array}\right]
$$

The mean of this random vector is defined as

$$
\boldsymbol{\mu}_{\boldsymbol{X}}=\left[\begin{array}{c}
\mu_{1} \\
\mu_{2} \\
\vdots \\
\mu_{N}
\end{array}\right]=\mathrm{E}_{\boldsymbol{X}}\{\boldsymbol{X}\}=\left[\begin{array}{c}
\mathrm{E}_{X_{1}}\left[X_{1}\right] \\
\mathrm{E}_{X_{2}}\left[X_{2}\right] \\
\vdots \\
\mathrm{E}_{X_{N}}\left[X_{N}\right]
\end{array}\right] .
$$

Denote the covariance between X_{i} and $X_{k}, \operatorname{cov}_{X_{i}, X_{k}}\left(X_{i}, X_{k}\right)$, by $c_{i, k}$; hence, the variance of X_{i} is $c_{i, i}=\operatorname{cov}_{X_{i}, X_{k}}\left(X_{i}, X_{i}\right)=$ $\underbrace{\operatorname{var}_{X_{i}}\left(X_{i}\right)=\sigma_{X_{i}}^{2}}$. The covariance matrix of \boldsymbol{X} is defined as more notation

$$
C_{\boldsymbol{X}}=\left[\begin{array}{ccccc}
c_{1,1} & c_{1,2} & \cdots & \cdots & c_{1, N} \\
c_{2,1} & c_{2,2} & \cdots & \cdots & c_{2, N} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
c_{N, 1} & c_{N, 2} & \cdots & \cdots & c_{N, N}
\end{array}\right]
$$

The above definitions apply to both real and complex vectors \boldsymbol{X}.

Covariance matrix of a real-valued random vector \boldsymbol{X} :

$$
\begin{aligned}
C_{\boldsymbol{X}} & =\mathrm{E}_{\boldsymbol{x}}\left\{\left(\boldsymbol{X}-\mathrm{E}_{\boldsymbol{x}}[\boldsymbol{X}]\right)\left(\boldsymbol{X}-\mathrm{E}_{\boldsymbol{X}}[\boldsymbol{X}]\right)^{T}\right\} \\
& =\mathrm{E}_{\boldsymbol{X}}\left[\boldsymbol{X} \boldsymbol{X}^{T}\right]-\mathrm{E}_{\boldsymbol{X}}[\boldsymbol{X}]\left(\mathrm{E}_{\boldsymbol{x}}[\boldsymbol{X}]\right)^{T}
\end{aligned}
$$

For real-valued $\boldsymbol{X}, c_{i, k}=c_{k, i}$ and, therefore, $C_{\boldsymbol{X}}$ is a symmetric matrix.

Linear Transform of Random Vectors
Linear Transform. For real-valued $\boldsymbol{Y}, \boldsymbol{X}, A$,

$$
\boldsymbol{Y}=g(\boldsymbol{X})=A \boldsymbol{X}
$$

Mean Vector:

$$
\begin{equation*}
\boldsymbol{\mu}_{\boldsymbol{Y}}=\mathrm{E}_{\boldsymbol{X}}\{A \boldsymbol{X}\}=A \boldsymbol{\mu}_{\boldsymbol{X}} . \tag{2}
\end{equation*}
$$

Covariance Matrix:

$$
\begin{align*}
C_{\boldsymbol{Y}} & =\mathrm{E}_{\boldsymbol{Y}}\left\{\boldsymbol{Y} \boldsymbol{Y}^{T}\right\}-\boldsymbol{\mu}_{\boldsymbol{Y}} \boldsymbol{\mu}_{\boldsymbol{Y}}^{T} \\
& =\mathrm{E}_{\boldsymbol{X}}\left\{A \boldsymbol{X} \boldsymbol{X}^{T} A^{T}\right\}-A \boldsymbol{\mu}_{\boldsymbol{X}} \boldsymbol{\mu}_{\boldsymbol{X}}^{T} A^{T} \\
& =A(\underbrace{\mathrm{E}_{\boldsymbol{X}}\left\{\boldsymbol{X} \boldsymbol{X}^{T}\right\}-\boldsymbol{\mu}_{\boldsymbol{X}} \boldsymbol{\mu}_{\boldsymbol{X}}^{T}}_{C_{X}}) A^{T} \\
& =A C_{\boldsymbol{X}} A^{T} . \tag{3}
\end{align*}
$$

Reminder: Iterated Expectations

In general, we can find $\mathrm{E}_{X, Y}[g(X, Y)]$ using iterated expectations:

$$
\begin{equation*}
\mathrm{E}_{X, Y}[g(X, Y)]=\mathrm{E}_{Y}\left\{\mathrm{E}_{X \mid Y}[g(X, Y) \mid Y]\right\} \tag{4}
\end{equation*}
$$

where $\mathrm{E}_{X \mid Y}$ denotes the expectation with respect to $f_{X \mid Y}(x \mid y)$ and E_{Y} denotes the expectation with respect to $f_{Y}(y)$.

Proof.

$\mathrm{E}_{Y}\left\{\mathrm{E}_{X \mid Y}[g(X, Y) \mid Y]\right\}=\int_{-\infty}^{+\infty} \mathrm{E}_{X \mid Y}[g(X, Y) \mid y] f_{Y}(y) d y$
$=\int_{-\infty}^{+\infty}\left(\int_{-\infty}^{+\infty} g(x, y) f_{X \mid Y}(x \mid y) d x\right) f_{Y}(y) d y$
$=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x, y) f_{X \mid Y}(x \mid y) f_{Y}(y) d x d y$
$=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x, y) f_{X, Y}(x, y) d x d y$
$=\mathrm{E}_{X, Y}[g(X, Y)]$.

Reminder: Law of Conditional Variances

Define the conditional variance of X given $Y=y$ to be the variance of X with respect to $f_{X \mid Y}(x \mid y)$, i.e.

$$
\begin{gathered}
\operatorname{var}_{X \mid Y}(X \mid Y=y)=\mathrm{E}_{X \mid Y}\left[\left(X-\mathrm{E}_{X \mid Y}[X \mid y]\right)^{2} \mid y\right] \\
=\mathrm{E}_{X \mid Y}\left[X^{2} \mid y\right]-\left(\mathrm{E}_{X \mid Y}[X \mid y]\right)^{2} .
\end{gathered}
$$

The random variable $\operatorname{var}_{X \mid Y}(X \mid Y)$ is a function of Y only, taking values $\operatorname{var}(X \mid Y=y)$. Its expected value with respect to Y is
$\mathrm{E}_{Y}\left\{\operatorname{var}_{X \mid Y}(X \mid Y)\right\}=\mathrm{E}_{Y}\left\{\mathrm{E}_{X \mid Y}\left[X^{2} \mid Y\right]-\left(\mathrm{E}_{X \mid Y}[X \mid Y]\right)^{2}\right\}$

$$
\begin{aligned}
\text { iterated exp. } & \mathrm{E}_{X, Y}\left[X^{2}\right]-\mathrm{E}_{Y}\left\{\left(\mathrm{E}_{X \mid Y}[X \mid Y]\right)^{2}\right\} \\
= & \mathrm{E}_{X}\left[X^{2}\right]-\mathrm{E}_{Y}\left\{\left(\mathrm{E}_{X \mid Y}[X \mid Y]\right)^{2}\right\} .
\end{aligned}
$$

Since $\mathrm{E}_{X \mid Y}[X \mid Y]$ is a random variable (and a function of Y only), it has variance:
$\operatorname{var}_{Y}\left\{\mathrm{E}_{X \mid Y}[X \mid Y]\right\}=\mathrm{E}_{Y}\left\{\left(\mathrm{E}_{X \mid Y}[X \mid Y]\right)^{2}\right\}-\left(\mathrm{E}_{Y}\left\{\mathrm{E}_{X \mid Y}[X \mid Y]\right\}\right)^{2}$
iterated exp.

$$
\begin{array}{ll}
\text { tted exp. } & \mathrm{E}_{Y}\left\{\left(\mathrm{E}_{X \mid Y}[X \mid Y]\right)^{2}\right\}-\left(\mathrm{E}_{X, Y}[X]\right)^{2} \\
= & \mathrm{E}_{Y}\left\{\mathrm{E}_{X \mid Y}[X \mid Y]^{2}\right\}-\left(\mathrm{E}_{X}[X]\right)^{2} .
\end{array}
$$

Adding the above two expressions yields the law of conditional variances:

$$
\begin{equation*}
\mathrm{E}_{Y}\left\{\operatorname{var}_{X \mid Y}(X \mid Y)\right\}+\operatorname{var}_{Y}\left\{\mathrm{E}_{X \mid Y}[X \mid Y]\right\}=\operatorname{var}_{X}(X) . \tag{5}
\end{equation*}
$$

Note: (4) and (5) hold for both real- and complex-valued random variables.

Useful Expectation and Covariance Identities for Real-valued Random Variables and Vectors

$$
\begin{aligned}
\mathrm{E}_{X, Y}[a X+b Y+c]= & a \cdot \mathrm{E}_{X}[X]+b \cdot \mathrm{E}_{Y}[Y]+c \\
\operatorname{var}_{X, Y}(a X+b Y+c)= & a^{2} \operatorname{var}_{X}(X)+b^{2} \operatorname{var}_{Y}(Y) \\
& +2 a b \cdot \operatorname{cov}_{X, Y}(X, Y)
\end{aligned}
$$

where a, b, and c are constants and X and Y are random variables. A vector/matrix version of the above identities:

$$
\begin{aligned}
& \mathrm{E}_{\boldsymbol{X}, \boldsymbol{Y}}[A \boldsymbol{X}+B \boldsymbol{Y}+\boldsymbol{c}]=A \mathrm{E}_{\boldsymbol{X}}[\boldsymbol{X}]+B \mathrm{E}_{\boldsymbol{Y}}[\boldsymbol{Y}]+\boldsymbol{c} \\
& \operatorname{cov}_{\boldsymbol{X}, \boldsymbol{Y}}(A \boldsymbol{X}+B \boldsymbol{Y}+\boldsymbol{c})=A \operatorname{cov}_{\boldsymbol{X}}(\boldsymbol{X}) A^{T}+B \operatorname{cov}_{\boldsymbol{Y}}(\boldsymbol{Y}) B^{T} \\
& +A \operatorname{cov}_{\boldsymbol{X}, \boldsymbol{Y}}(\boldsymbol{X}, \boldsymbol{Y}) B^{T}+B \operatorname{cov}_{\boldsymbol{X}, \boldsymbol{Y}}(\boldsymbol{Y}, \boldsymbol{X}) A^{T}
\end{aligned}
$$

where " T " denotes a transpose and

$$
\operatorname{cov}_{\boldsymbol{X}, \boldsymbol{Y}}(\boldsymbol{X}, \boldsymbol{Y})=\mathrm{E}_{\boldsymbol{X}, \boldsymbol{Y}}\left\{\left(\boldsymbol{X}-\mathrm{E}_{\boldsymbol{X}}[\boldsymbol{X}]\right)\left(\boldsymbol{Y}-\mathrm{E}_{\boldsymbol{Y}}[\boldsymbol{Y}]\right)^{T}\right\}
$$

Useful properties of crosscovariance matrices:

$$
\operatorname{cov}_{\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z}}(\boldsymbol{X}, \boldsymbol{Y}+\boldsymbol{Z})=\operatorname{cov}_{\boldsymbol{X}, \boldsymbol{Y}}(\boldsymbol{X}, \boldsymbol{Y})+\operatorname{cov}_{\boldsymbol{X}, \boldsymbol{Z}}(\boldsymbol{X}, \boldsymbol{Z})
$$

$$
\operatorname{cov}_{\boldsymbol{Y}, \boldsymbol{X}}(\boldsymbol{Y}, \boldsymbol{X})=\left[\operatorname{cov}_{\boldsymbol{X}, \boldsymbol{Y}}(\boldsymbol{X}, \boldsymbol{Y})\right]^{T}
$$

$$
\begin{aligned}
\operatorname{cov}_{X}(\boldsymbol{X}) & =\operatorname{cov}_{X}(\boldsymbol{X}, \boldsymbol{X}) \\
\operatorname{var}_{X}(X) & =\operatorname{cov}_{X}(X, X) .
\end{aligned}
$$

$$
\operatorname{cov}_{\boldsymbol{X}, \boldsymbol{Y}}(A \boldsymbol{X}+\boldsymbol{b}, P \boldsymbol{Y}+\boldsymbol{q})=A \operatorname{cov}_{\boldsymbol{X}, \boldsymbol{Y}}(\boldsymbol{X}, \boldsymbol{Y}) P^{T}
$$

(To refresh memory about covariance and its properties, see p . 12 of handout 5 in EE 420x notes. For random vectors, see handout 7 in EE 420x notes, particularly pp. 1-15.)

Useful theorems:

(1) (handout 5 in EE 420x notes)

$$
\begin{aligned}
& \mathrm{E}_{X}(X)=\mathrm{E}_{Y}\left[\mathrm{E}_{X \mid Y}(X \mid Y)\right] \quad \text { shown on p. } 8 \\
& \mathrm{E}_{X \mid Y}[g(X) \cdot h(Y) \mid y]=h(y) \cdot \mathrm{E}_{X \mid Y}[g(X) \mid y] \\
& \mathrm{E}_{X, Y}[g(X) \cdot h(Y)]=\mathrm{E}_{Y}\left\{h(Y) \cdot \mathrm{E}_{X \mid Y}[g(X) \mid Y]\right\} .
\end{aligned}
$$

The vector version of (1) is the same - just put bold letters.
(2)

$$
\operatorname{var}_{X}(X)=\mathrm{E}_{Y}\left[\operatorname{var}_{X \mid Y}(X \mid Y)\right]+\operatorname{var}_{Y}\left(\mathrm{E}_{X \mid Y}[X \mid Y]\right) ;
$$

and the vector/matrix version is

$$
\underbrace{\operatorname{cov}_{\boldsymbol{X}}(\boldsymbol{X})}_{\substack{\text { variance/covariance } \\ \text { matrix of } \boldsymbol{X}}}=\mathrm{E}_{\boldsymbol{Y}}\left[\operatorname{cov}_{\boldsymbol{X} \mid \boldsymbol{Y}}(\boldsymbol{X} \mid \boldsymbol{Y})\right]
$$ $+\operatorname{cov}_{\boldsymbol{Y}}\left(\mathrm{E}_{\boldsymbol{X} \mid \boldsymbol{Y}}[\boldsymbol{X} \mid \boldsymbol{Y}]\right)$ shown on p..

(3) Generalized law of conditional variances:

$$
\begin{aligned}
\operatorname{cov}_{X, Y}(& (X, Y)=\mathrm{E}_{Z}\left[\operatorname{cov}_{X, Y \mid Z}(X, Y \mid Z)\right] \\
& +\operatorname{cov}_{Z}\left(\mathrm{E}_{X \mid Z}[X \mid Z], \mathrm{E}_{Y \mid Z}[Y \mid Z]\right) .
\end{aligned}
$$

(4) Transformation:

$$
\boldsymbol{Y}=\boldsymbol{g}(\boldsymbol{X}) \quad \stackrel{\text { one-to-one }}{\Longleftrightarrow} \quad \begin{gathered}
Y_{1}=g_{1}\left(X_{1}, \ldots, X_{n}\right) \\
\vdots \\
\\
\\
Y_{n}=g_{n}\left(X_{1}, \ldots, X_{n}\right)
\end{gathered}
$$

then

$$
f_{Y}(\boldsymbol{y})=f_{X}\left(h_{1}\left(y_{1}\right), \ldots, h_{n}\left(y_{n}\right)\right) \cdot|J|
$$

where $h(\cdot)$ is the unique inverse of $g(\cdot)$ and

$$
J=\left|\frac{\partial \boldsymbol{x}}{\partial \boldsymbol{y}^{T}}\right|=\left|\begin{array}{ccc}
\frac{\partial x_{1}}{\partial y_{1}} & \cdots & \frac{\partial x_{1}}{\partial y_{n}} \\
\vdots & \vdots & \vdots \\
\frac{\partial x_{n}}{\partial y_{1}} & \cdots & \frac{\partial x_{n}}{\partial y_{n}}
\end{array}\right|
$$

Print and read the handout Probability distributions from the Course readings section on WebCT. Bring it with you to the midterm exams.

Jointly Gaussian Real-valued RVs

Scalar Gaussian random variables:

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma_{X}^{2}}} \exp \left[-\frac{\left(x-\mu_{X}\right)^{2}}{2 \sigma_{X}^{2}}\right] .
$$

Definition. Two real-valued $R V_{s} X$ and Y are jointly Gaussian if their joint pdf is of the form

$$
\begin{align*}
& f_{X, Y}(x, y)=\frac{1}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho_{X, Y}^{2}}} \\
& \quad \cdot \exp \left\{-\frac{1}{2\left(1-\rho_{X, Y}^{2}\right)} \cdot\left[\frac{\left(x-\mu_{X}\right)^{2}}{\sigma_{X}^{2}}+\frac{\left(y-\mu_{Y}\right)^{2}}{\sigma_{Y}^{2}}\right.\right. \\
&\left.\left.-2 \rho_{X, Y} \frac{\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right)}{\sigma_{X} \sigma_{Y}}\right]\right\} . \tag{6}
\end{align*}
$$

This pdf is parameterized by $\mu_{X}, \mu_{Y}, \sigma_{X}^{2}, \sigma_{Y}^{2}$, and $\rho_{X, Y}$. Here, $\sigma_{X}=\sqrt{\sigma_{X}^{2}}$ and $\sigma_{Y}=\sqrt{\sigma_{Y}^{2}}$.

Note: We will soon define a more general multivariate Gaussian pdf.

If X and Y are jointly Gaussian, contours of equal joint pdf are ellipses defined by the quadratic equation

$$
\frac{\left(x-\mu_{X}\right)^{2}}{\sigma_{X}^{2}}+\frac{\left(y-\mu_{Y}\right)^{2}}{\sigma_{Y}^{2}}-2 \rho_{X, Y} \frac{\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right)}{\sigma_{X} \sigma_{Y}}=\mathrm{const} \geq 0
$$

Examples: In the following examples, we plot contours of the joint pdf $f_{X, Y}(x, y)$ for zero-mean jointly Gaussian RVs for various values of σ_{X}, σ_{Y}, and $\rho_{X, Y}$.

If X and Y are jointly Gaussian, the conditional pdfs are Gaussian, e.g.
$X \left\lvert\,\{Y=y\} \sim \mathcal{N}\left(\rho_{X, Y} \cdot \sigma_{X} \cdot \frac{y-\mathrm{E}_{Y}[Y]}{\sigma_{Y}}+\mathrm{E}_{X}[X],\left(1-\rho_{X, Y}^{2}\right) \cdot \sigma_{X}^{2}\right)\right.$.
(7)

If X and Y are jointly Gaussian and uncorrelated, i.e. $\rho_{X, Y}=0$, they are also independent.

Gaussian Random Vectors

Real-valued Gaussian random vectors:
$f_{\boldsymbol{X}}(\boldsymbol{x})=\frac{1}{(2 \pi)^{N / 2}\left|C_{\boldsymbol{X}}\right|^{1 / 2}} \exp \left[-\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{\mu}_{\boldsymbol{X}}\right)^{T} C_{\boldsymbol{X}}^{-1}\left(\boldsymbol{x}-\boldsymbol{\mu}_{\boldsymbol{X}}\right)\right]$.
Complex-valued Gaussian random vectors:

$$
f_{\boldsymbol{Z}}(\boldsymbol{z})=\frac{1}{\pi^{N}\left|C_{\boldsymbol{Z}}\right|} \exp \left[-\left(\boldsymbol{z}-\boldsymbol{\mu}_{\boldsymbol{Z}}\right)^{H} C_{\boldsymbol{Z}}^{-1}\left(\boldsymbol{z}-\boldsymbol{\mu}_{\boldsymbol{Z}}\right)\right]
$$

Notation for real- and complex-valued Gaussian random vectors:

$$
\begin{aligned}
& \boldsymbol{X} \sim \mathcal{N}_{\mathrm{r}}\left(\boldsymbol{\mu}_{\boldsymbol{X}}, C_{\boldsymbol{X}}\right)\left[\text { or simply } \mathcal{N}\left(\boldsymbol{\mu}_{\boldsymbol{X}}, C_{\boldsymbol{X}}\right)\right] \quad \text { real } \\
& \boldsymbol{X} \sim \mathcal{N}_{\mathrm{c}}\left(\boldsymbol{\mu}_{\boldsymbol{X}}, C_{\boldsymbol{X}}\right) \quad \text { complex. }
\end{aligned}
$$

An affine transform of a Gaussian vector is also a Gaussian random vector, i.e. if

$$
\boldsymbol{Y}=A \boldsymbol{X}+\boldsymbol{b}
$$

then

$$
\begin{array}{rlrl}
\boldsymbol{Y} & \sim \mathcal{N}_{\mathrm{r}}\left(A \boldsymbol{\mu}_{\boldsymbol{X}}+\boldsymbol{b}, A C_{\boldsymbol{X}} A^{T}\right) & \text { real } \\
\boldsymbol{Y} & \sim \mathcal{N}_{\mathrm{c}}\left(A \boldsymbol{\mu}_{\boldsymbol{X}}+\boldsymbol{b}, A C_{\boldsymbol{X}} A^{H}\right) & & \text { complex. }
\end{array}
$$

The Gaussian random vector $\boldsymbol{W} \sim \mathcal{N}_{\mathbf{r}}\left(\mathbf{0}, \sigma^{2} I_{n}\right)$ (where I_{n} denotes the identity matrix of size n) is called white; pdf contours of a white Gaussian random vector are spheres centered at the origin. Suppose that $W[n], n=0,1, \ldots, N-$ 1 are independent, identically distributed (i.i.d.) zeromean univariate Gaussian $\mathcal{N}\left(0, \sigma^{2}\right)$. Then, for $\boldsymbol{W}=$ $[W[0], W[1], \ldots, W[N-1]]^{T}$,

$$
f_{\boldsymbol{W}}(\boldsymbol{w})=\mathcal{N}\left(\boldsymbol{w} \mid \mathbf{0}, \sigma^{2} I\right)
$$

Suppose now that, for these $W[n]$,

$$
Y[n]=\theta+W[n]
$$

where θ is a constant. What is the joint pdf of $Y[0], Y[1], \ldots$, and $Y[N-1]$? This pdf is the pdf of the vector $\boldsymbol{Y}=$ $[Y[0], Y[1], \ldots, Y[N-1]]^{T}$:

$$
\boldsymbol{Y}=\mathbf{1} \theta+\boldsymbol{W}
$$

where $\mathbf{1}$ is an $N \times 1$ vector of ones. Now,

$$
f_{\boldsymbol{Y}}(\boldsymbol{y})=\mathcal{N}\left(\boldsymbol{y} \mid \mathbf{1} \theta, \sigma^{2} I\right) .
$$

Since θ is a constant,

$$
f_{Y}(\boldsymbol{y})=f_{\boldsymbol{Y} \mid \theta}(\boldsymbol{y} \mid \theta) .
$$

Gaussian Random Vectors

A real-valued random vector $\boldsymbol{X}=\left[X_{1}, X_{2}, \ldots, X_{n}\right]^{T}$ with

- mean μ and
- covariance matrix Σ with determinant $|\Sigma|>0$ (i.e. Σ is positive definite)
is a Gaussian random vector (or $X_{1}, X_{2}, \ldots, X_{n}$ are jointly Gaussian $R V$ s) if and only if its joint pdf is

$$
\begin{equation*}
f_{\boldsymbol{X}}(\boldsymbol{x})=\frac{1}{|2 \pi \Sigma|^{1 / 2}} \exp \left[-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right] \tag{8}
\end{equation*}
$$

Verify that, for $n=2$, this joint pdf reduces to the twodimensional pdf in (6).

Notation: We use $\boldsymbol{X} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$ to denote a Gaussian random vector. Since Σ is positive definite, Σ^{-1} is also positive definite and, for $\boldsymbol{x} \neq \boldsymbol{\mu}$,

$$
(\boldsymbol{x}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})>0
$$

which means that the contours of the multivariate Gaussian pdf in (8) are ellipsoids.

The Gaussian random vector $\boldsymbol{X} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} I_{n}\right)$ (where I_{n} denotes the identity matrix of size n) is called white contours of the pdf of a white Gaussian random vector are spheres centered at the origin.

Properties of Real-valued Gaussian Random Vectors

Property 1: For a Gaussian random vector, "uncorrelation" implies independence.

This is easy to verify by setting $\Sigma_{i, j}=0$ for all $i \neq j$ in the joint pdf, then Σ becomes diagonal and so does Σ^{-1}; then, the joint pdf reduces to the product of marginal pdfs $f_{X_{i}}\left(x_{i}\right)=\mathcal{N}\left(\mu_{i}, \Sigma_{i, i}\right)=\mathcal{N}\left(\mu_{i}, \sigma_{X_{i}}^{2}\right)$. Clearly, this property holds for blocks of RVs (subvectors) as well.

Property 2: A linear transform of a Gaussian random vector $\boldsymbol{X} \sim \mathcal{N}\left(\boldsymbol{\mu}_{\boldsymbol{X}}, \Sigma_{\boldsymbol{X}}\right)$ yields a Gaussian random vector:

$$
\boldsymbol{Y}=A \boldsymbol{X} \sim \mathcal{N}\left(A \boldsymbol{\mu}_{\boldsymbol{X}}, A \Sigma_{\boldsymbol{X}} A^{T}\right)
$$

It is easy to show that $\mathrm{E}_{\boldsymbol{Y}}[\boldsymbol{Y}]=A \boldsymbol{\mu}_{\boldsymbol{X}}$ and $\operatorname{cov}_{\boldsymbol{Y}}(\boldsymbol{Y})=\Sigma_{\boldsymbol{Y}}=$ $A \Sigma_{\boldsymbol{X}} A^{T}$. So

$$
\mathrm{E}_{\boldsymbol{Y}}[\boldsymbol{Y}]=\mathrm{E}_{\boldsymbol{X}}[A \boldsymbol{X}]=A \mathrm{E}_{\boldsymbol{X}}[\boldsymbol{X}]=A \boldsymbol{\mu}_{\boldsymbol{X}}
$$

and

$$
\begin{aligned}
\Sigma_{\boldsymbol{Y}} & =\mathrm{E}_{\boldsymbol{Y}}\left[\left(\boldsymbol{Y}-\mathrm{E}_{\boldsymbol{Y}}[\boldsymbol{Y}]\right)\left(\boldsymbol{Y}-\mathrm{E}_{\boldsymbol{Y}}[\boldsymbol{Y}]\right)^{T}\right] \\
& =\mathrm{E}_{\boldsymbol{X}}\left[\left(A \boldsymbol{X}-A \boldsymbol{\mu}_{\boldsymbol{X}}\right)\left(A \boldsymbol{X}-A \boldsymbol{\mu}_{\boldsymbol{X}}\right)^{T}\right] \\
& =A \mathrm{E}_{\boldsymbol{X}}\left[\left(\boldsymbol{X}-\boldsymbol{\mu}_{\boldsymbol{X}}\right)\left(\boldsymbol{X}-\boldsymbol{\mu}_{\boldsymbol{X}}\right)^{T}\right] A^{T}=A \Sigma_{\boldsymbol{X}} A^{T}
\end{aligned}
$$

Of course, if we use the definition of a Gaussian random vector in (8), we cannot yet claim that \boldsymbol{Y} is a Gaussian random vector. (For a different definition of a Gaussian random vector, we would be done right here.)

Proof. We need to verify that the joint pdf of \boldsymbol{Y} indeed has the right form. Here, we decide to take the equivalent (easier) task and verify that the characteristic function of \boldsymbol{Y} has the right form.

Definition. Suppose $\boldsymbol{X} \sim f_{\boldsymbol{X}}(\boldsymbol{X})$. Then the characteristic function of \boldsymbol{X} is given by

$$
\Phi_{\boldsymbol{X}}(\boldsymbol{\omega})=\mathrm{E}_{\boldsymbol{X}}\left[\exp \left(j \boldsymbol{\omega}^{T} \boldsymbol{X}\right)\right]
$$

where $\boldsymbol{\omega}$ is an n-dimensional real-valued vector and $j=\sqrt{-1}$.
Thus

$$
\Phi_{\boldsymbol{X}}(\boldsymbol{\omega})=\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} f_{\boldsymbol{X}}(\boldsymbol{x}) \exp \left(j \boldsymbol{\omega}^{T} \boldsymbol{x}\right) d \boldsymbol{x}
$$

proportional to the inverse multi-dimensional Fourier transform of $f_{\boldsymbol{X}}(\boldsymbol{x})$; therefore, we can find $f_{\boldsymbol{X}}(\boldsymbol{x})$ by taking the Fourier transform (with the appropriate proportionality factor):

$$
f_{\boldsymbol{X}}(\boldsymbol{x})=\frac{1}{(2 \pi)^{n}} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \Phi_{\boldsymbol{X}}(\boldsymbol{\omega}) \exp \left(-j \boldsymbol{\omega}^{T} \boldsymbol{x}\right) d \boldsymbol{x}
$$

Example: The characteristic function for $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ is given by

$$
\begin{equation*}
\Phi_{X}(\omega)=\exp \left(-\frac{1}{2} \omega^{2} \sigma^{2}+j \mu \omega\right) \tag{9}
\end{equation*}
$$

and for a Gaussian random vector $\boldsymbol{Z} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$,

$$
\begin{equation*}
\Phi_{\boldsymbol{Z}}(\boldsymbol{\omega})=\exp \left(-\frac{1}{2} \boldsymbol{\omega}^{T} \Sigma \boldsymbol{\omega}+j \boldsymbol{\omega}^{T} \boldsymbol{\mu}\right) \tag{10}
\end{equation*}
$$

Now, go back to our proof: the characteristic function of $\boldsymbol{Y}=A \boldsymbol{X}$ is

$$
\begin{aligned}
\Phi_{\boldsymbol{Y}}(\boldsymbol{\omega}) & =\mathrm{E}_{\boldsymbol{Y}}\left[\exp \left(j \boldsymbol{\omega}^{T} \boldsymbol{Y}\right)\right] \\
& =\mathrm{E}_{\boldsymbol{X}}\left[\exp \left(j \boldsymbol{\omega}^{T} A \boldsymbol{X}\right)\right] \\
& =\exp \left(-\frac{1}{2} \boldsymbol{\omega}^{T} A \Sigma_{\boldsymbol{X}} A^{T} \boldsymbol{\omega}+j \boldsymbol{\omega}^{T} A \boldsymbol{\mu}_{\boldsymbol{X}}\right)
\end{aligned}
$$

Thus

$$
\boldsymbol{Y}=A \boldsymbol{X} \sim \mathcal{N}\left(A \boldsymbol{\mu}_{\boldsymbol{X}}, A \Sigma_{\boldsymbol{X}} A^{T}\right)
$$

Example: Let

$$
\mathbf{X} \sim \mathcal{N}\left(\mathbf{0},\left[\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right]\right)
$$

Find the joint pdf of

$$
\mathbf{Y}=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \mathbf{X}
$$

Solution: From Property 2, we conclude that

$$
\mathbf{Y} \sim \mathcal{N}\left(\mathbf{0},\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\right)=\mathcal{N}\left(\mathbf{0},\left[\begin{array}{ll}
7 & 3 \\
3 & 2
\end{array}\right]\right)
$$

Property 3: Marginals of a Gaussian random vector are Gaussian, i.e. if \boldsymbol{X} is a Gaussian random vector, then, for any $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subset\{1,2, \ldots, n\}$,

$$
\boldsymbol{Y}=\left[\begin{array}{c}
X_{i_{1}} \\
X_{i_{2}} \\
\vdots \\
X_{i_{k}}
\end{array}\right]
$$

is a Gaussian random vector. To show this, we use Property 2.
Here is an example with $n=3$ and $\boldsymbol{Y}=\left[\begin{array}{l}X_{1} \\ X_{3}\end{array}\right]$. We set

$$
\boldsymbol{Y}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right]
$$

thus

$$
\boldsymbol{Y} \sim \mathcal{N}\left(\left[\begin{array}{l}
\mu_{1} \\
\mu_{3}
\end{array}\right],\left[\begin{array}{ll}
\Sigma_{1,1} & \Sigma_{1,3} \\
\Sigma_{3,1} & \Sigma_{3,3}
\end{array}\right]\right) .
$$

Here

$$
\mathrm{E}_{\boldsymbol{X}}\left\{\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right]\right\}=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2} \\
\mu_{3}
\end{array}\right]
$$

and

$$
\operatorname{cov}_{\boldsymbol{X}}\left\{\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right]\right\}=\left[\begin{array}{lll}
\Sigma_{1,1} & \Sigma_{1,2} & \Sigma_{1,3} \\
\Sigma_{2,1} & \Sigma_{2,2} & \Sigma_{2,3} \\
\Sigma_{3,1} & \Sigma_{3,2} & \Sigma_{3,3}
\end{array}\right]
$$

and note that

$$
\left[\begin{array}{l}
\mu_{1} \\
\mu_{3}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mu_{1} \\
\mu_{2} \\
\mu_{3}
\end{array}\right]
$$

and
$\left[\begin{array}{cc}\Sigma_{1,1} & \Sigma_{1,3} \\ \Sigma_{3,1} & \Sigma_{3,3}\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\Sigma_{1,1} & \Sigma_{1,2} & \Sigma_{1,3} \\ \Sigma_{2,1} & \Sigma_{2,2} & \Sigma_{2,3} \\ \Sigma_{3,1} & \Sigma_{3,2} & \Sigma_{3,3}\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 1\end{array}\right]$

The converse of Property 3 does not hold in general; here is a counterexample:

Example: Suppose $X_{1} \sim \mathcal{N}(0,1)$ and

$$
X_{2}=\left\{\begin{array}{cl}
1, & \text { w.p. } \frac{1}{2} \\
-1, & \text { w.p. } \frac{1}{2}
\end{array}\right.
$$

are independent RV s and consider $X_{3}=X_{1} X_{2}$. Observe that

- $X_{3} \sim \mathcal{N}(0,1)$ and
- $f_{X_{1}, X_{3}}\left(x_{1}, x_{3}\right)$ is not a jointly Gaussian pdf.

Property 4: Conditionals of Gaussian random vectors are Gaussian, ie. if

$$
\boldsymbol{X}=\left[\begin{array}{l}
\boldsymbol{X}_{1} \\
\boldsymbol{X}_{2}
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{l}
\boldsymbol{\mu}_{1} \\
\boldsymbol{\mu}_{2}
\end{array}\right],\left[\begin{array}{ll}
\Sigma_{1,1} & \Sigma_{1,2} \\
\Sigma_{2,1} & \Sigma_{2,2}
\end{array}\right]\right)
$$

then
$\left\{\boldsymbol{X}_{2} \mid \boldsymbol{X}_{1}=\boldsymbol{x}_{1}\right\} \sim \mathcal{N}\left(\Sigma_{2,1} \Sigma_{1,1}^{-1}\left(\boldsymbol{x}_{1}-\boldsymbol{\mu}_{1}\right)+\boldsymbol{\mu}_{2}, \Sigma_{2,2}-\Sigma_{2,1} \Sigma_{1,1}^{-1} \Sigma_{1,2}\right)$
and
$\left\{\boldsymbol{X}_{1} \mid \boldsymbol{X}_{2}=\boldsymbol{x}_{2}\right\} \sim \mathcal{N}\left(\Sigma_{1,2} \Sigma_{2,2}^{-1}\left(\boldsymbol{x}_{2}-\boldsymbol{\mu}_{2}\right)+\boldsymbol{\mu}_{1}, \Sigma_{1,1}-\Sigma_{1,2} \Sigma_{2,2}^{-1} \Sigma_{2,1}\right)$.

Example: Compare this result to the case of $n=2$ in (7):

$$
\left\{X_{2} \mid X_{1}=x_{1}\right\} \sim \mathcal{N}\left(\frac{\Sigma_{2,1}}{\Sigma_{1,1}}\left(x_{1}-\mu_{1}\right)+\mu_{2}, \Sigma_{2,2}-\frac{\Sigma_{1,2}^{2}}{\Sigma_{1,1}}\right)
$$

In particular, having $X=X_{2}$ and $Y=X_{1}, y=x_{1}$, this result becomes:

$$
\{X \mid Y=y\} \sim \mathcal{N}\left(\frac{\sigma_{X, Y}}{\sigma_{Y}^{2}}\left(y-\mu_{Y}\right)+\mu_{X}, \sigma_{X}^{2}-\frac{\sigma_{X, Y}^{2}}{\sigma_{Y}^{2}}\right)
$$

where $\sigma_{X, Y}=\operatorname{cov}_{X, Y}(X, Y), \sigma_{X}^{2}=\operatorname{cov}_{X, X}(X, X)=\operatorname{var}_{X}(X)$, and $\sigma_{Y}^{2}=\operatorname{cov}_{Y, Y}(Y, Y)=\operatorname{var}_{Y}(Y)$. Now, it is clear that

$$
\rho_{X, Y}=\frac{\sigma_{X, Y}}{\sigma_{X} \sigma_{Y}}
$$

where $\sigma_{X}=\sqrt{\sigma_{X}^{2}}>0$ and $\sigma_{Y}=\sqrt{\sigma_{Y}^{2}}>0$.

Example: Suppose

From Property 4, it follows that

$$
\begin{aligned}
E_{X_{2} \mid X_{1}}^{E}\left(\mathbf{X}_{2} \mid X_{1}=x\right) & =\left[\begin{array}{l}
2 \\
1
\end{array}\right](x-1)+\left[\begin{array}{l}
2 \\
2
\end{array}\right]=\left[\begin{array}{c}
2 x \\
x+1
\end{array}\right] \\
\Sigma_{\left\{\mathbf{X}_{2} \mid X_{1}=x\right\}} & =\left[\begin{array}{ll}
5 & 2 \\
2 & 9
\end{array}\right]-\left[\begin{array}{l}
2 \\
1
\end{array}\right]\left[\begin{array}{ll}
2 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 8
\end{array}\right]
\end{aligned}
$$

Property 5: If $\boldsymbol{X} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$ then
$(\boldsymbol{x}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu}) \sim \chi_{d}^{2} \quad($ Chi-square in your distr. table $)$.

Additive Gaussian Noise Channel

Consider a communication channel with input

$$
X \sim \mathcal{N}\left(\mu_{X}, \tau_{X}^{2}\right)
$$

and noise

$$
W \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

where X and W are independent and the measurement Y is

$$
Y=X+W
$$

Since X and W are independent, we have

$$
f_{X, W}(x, w)=f_{X}(x) f_{W}(x)
$$

and

$$
\left[\begin{array}{c}
X \\
W
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{c}
\mu_{X} \\
0
\end{array}\right],\left[\begin{array}{cc}
\tau_{X}^{2} & 0 \\
0 & \sigma^{2}
\end{array}\right]\right) .
$$

What is $f_{Y \mid X}(y \mid x)$? Since

$$
\{Y \mid X=x\}=x+W \sim \mathcal{N}\left(x, \sigma^{2}\right)
$$

we have

$$
f_{Y \mid X}(y \mid x)=\mathcal{N}\left(y \mid x, \sigma^{2}\right) .
$$

How about $f_{Y}(y)$? Construct the joint pdf $f_{X, Y}(x, y)$ of X and Y : since

$$
\left[\begin{array}{l}
X \\
Y
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
X \\
W
\end{array}\right]
$$

then
$\left[\begin{array}{l}X \\ Y\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{c}\mu_{X} \\ 0\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{cc}\tau_{X}^{2} & 0 \\ 0 & \sigma^{2}\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\right)$
yielding

$$
\left[\begin{array}{c}
X \\
Y
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{l}
\mu_{X} \\
\mu_{X}
\end{array}\right],\left[\begin{array}{cc}
\tau_{X}^{2} & \tau_{X}^{2} \\
\tau_{X}^{2} & \tau_{X}^{2}+\sigma^{2}
\end{array}\right]\right) .
$$

Therefore,

$$
f_{Y}(y)=\mathcal{N}\left(y \mid \mu_{X}, \tau_{X}^{2}+\sigma^{2}\right) .
$$

Complex Gaussian Distribution

Consider joint pdf of real and imaginary part of an $n \times 1$ complex vector \boldsymbol{Z}

$$
\boldsymbol{Z}=\boldsymbol{U}+j \boldsymbol{V} .
$$

Assume

$$
\boldsymbol{X}=\left[\begin{array}{c}
\boldsymbol{U} \\
\boldsymbol{Y}
\end{array}\right]
$$

The $2 n$-variate Gaussian pdf of the (real!) vector \boldsymbol{X} is

$$
f_{\boldsymbol{X}}(\boldsymbol{x})=\frac{1}{\sqrt{(2 \pi)^{2 n}\left|\Sigma_{\boldsymbol{X}}\right|}} \exp \left[-\frac{1}{2}\left(\boldsymbol{z}-\boldsymbol{\mu}_{\boldsymbol{X}}\right)^{T} \Sigma_{\boldsymbol{X}}^{-1}\left(\boldsymbol{z}-\boldsymbol{\mu}_{\boldsymbol{X}}\right)\right]
$$

where

$$
\boldsymbol{\mu}_{X}=\left[\begin{array}{c}
\mu_{U} \\
\boldsymbol{\mu}_{V}
\end{array}\right], \quad \Sigma_{X}=\left[\begin{array}{cc}
\Sigma_{U U} & \Sigma_{U V} \\
\Sigma_{V U} & \Sigma_{V V}
\end{array}\right] .
$$

Therefore,

$$
\operatorname{Pr}\{\boldsymbol{x} \in A\}=\int_{\boldsymbol{x} \in A} f_{\boldsymbol{X}}(\boldsymbol{x}) d \boldsymbol{x}
$$

Complex Gaussian Distribution (cont.)

Assume that Σ_{X} has a special structure:

$$
\Sigma_{U U}=\Sigma_{V V} \quad \text { and } \quad \Sigma_{U V}=-\Sigma_{V U} .
$$

[Note that $\Sigma_{U V}=\Sigma_{V U}^{T}$ has to hold as well.] Then, we can define a complex Gaussian pdf of \boldsymbol{Z} as

$$
f_{\boldsymbol{Z}}(\boldsymbol{z})=\frac{1}{\pi^{n}\left|\Sigma_{\boldsymbol{X}}\right|} \exp \left[-\left(\boldsymbol{z}-\boldsymbol{\mu}_{\boldsymbol{Z}}\right)^{H} \Sigma_{\boldsymbol{Z}}^{-1}\left(\boldsymbol{z}-\boldsymbol{\mu}_{\boldsymbol{Z}}\right)\right]
$$

where

$$
\begin{aligned}
\boldsymbol{\mu}_{\boldsymbol{Z}} & =\boldsymbol{\mu}_{\boldsymbol{U}}+j \boldsymbol{\mu}_{\boldsymbol{V}} \\
\Sigma_{\boldsymbol{Z}} & =\mathrm{E}_{\boldsymbol{Z}}\left\{\left(\boldsymbol{Z}-\boldsymbol{\mu}_{\boldsymbol{Z}}\right)\left(\boldsymbol{Z}-\boldsymbol{\mu}_{\boldsymbol{Z}}\right)^{H}\right\}=2\left(\Sigma_{\boldsymbol{U U}}+j \Sigma_{\boldsymbol{V U}}\right) \\
\mathbf{0} & =\mathrm{E}_{\boldsymbol{Z}}\left\{\left(\boldsymbol{Z}-\boldsymbol{\mu}_{\boldsymbol{Z}}\right)\left(\boldsymbol{Z}-\boldsymbol{\mu}_{\boldsymbol{Z}}\right)^{T}\right\} .
\end{aligned}
$$

