

# **Recall: Geometric Intuition for Least Squares**

- Minimize  $J(x) = ||y Hx||^2$
- Solution satisfies:  $H^T H \hat{x} = H^T y$ , i.e.  $\hat{x} = (H^T H)^{-1} H^T y$
- So  $H^T(y H\hat{x}) = 0$
- The least error  $(y H\hat{x})$  is  $\perp$  to column space of H
- Think 3D: minimum error is always  $\perp$  to plane of projection

# Weighted Least Squares

- $\bullet \ y = Hx + e$
- Minimize

$$J(x) = (y - Hx)^T W(y - Hx) \triangleq ||y - Hx||_W^2$$
 (1)

Solution:

$$\hat{x} = (H^T W H)^{-1} H^T W y \tag{2}$$

• Given that E[e] = 0 and  $E[ee^T] = V$ , Min. Variance Unbiased Linear Estimator of x: choose  $W = V^{-1}$  in (2) Min. Variance of a vector: variance in any direction is minimized

#### **Proof (skip if you want to)**

- Given  $\hat{x} = Ly$ , find L, s.t. E[Ly] = E[LHx] = E[x], so LH = I
- Let  $L_0 = (H^T V^{-1} H)^{-1} H^T V^{-1}$
- Error variance  $E[(x \hat{x})^T]$

$$E[(x - \hat{x})(x - \hat{x})^T] = E[(x - LHx - Le)(x - LHX - Le)^T]$$
$$= E[Lee^TL^T] = LVL^T$$

Say 
$$L = L - L_0 + L_0$$
. Here  $LH = I$ ,  $L_0H = I$ , so  $(L - L_0)H = 0$ 

$$LVL^{T} = L_{0}VL_{0}^{T} + (L - L_{0})V(L - L_{0})^{T} + 2L_{0}V(L - L_{0})^{T}$$

$$= L_{0}VL_{0}^{T} + (L - L_{0})V(L - L_{0})^{T} + (H^{T}V^{-1}H)^{-1}H^{T}(L - L_{0})^{T}$$

$$= L_{0}VL_{0}^{T} + (L - L_{0})V(L - L_{0})^{T} > L_{0}VL_{0}^{T}$$

Thus  $L_0$  is the optimal estimator (Note:  $\geq$  for matrices)

## **Regularized Least Squares**

• Minimize

• Solution: Use weighted least squares formula with  $\tilde{y} = \begin{pmatrix} 0 \\ y' \end{pmatrix}$ ,

$$ilde{H} = \left[ egin{array}{c} I \\ H \end{array} 
ight], ilde{W} = M$$

Get:

$$\hat{x} = x_0 + (\Pi_0^{-1} + H^T W H)^{-1} H^T W (y - H x_0)$$

• Advantage: improves condition number of  $H^TH$ , incorporate prior knowledge about distance from  $x_0$ 

# **Recursive Least Squares**

- Use in one of following situations:
  - When number of equations much larger than number of variables:
     Storage problem
  - Getting data sequentially, do not want to re-solve the full problem again
  - The dimension of x is large, want to avoid inverting matrices
- Goal: At step i-1, have  $\hat{x}_{i-1}$ : minimizer of  $(x-x_0)^T \Pi_0^{-1} (x-x_0) + ||H_{i-1}x-Y_{i-1}||^2_{W_{i-1}}, Y_{i-1} = [y_1,...y_{i-1}]^T$

Find  $\hat{x}_i$ : minimizer of  $(x - x_0)^T \Pi_0^{-1} (x - x_0) + ||H_i x - Y_i||_{W_i}^2$ ,

$$H_i = \left[ \begin{array}{c} H_{i-1} \\ h_i \end{array} \right]$$
 ( $h_i$  is a row vector),  $Y_i = [y_1, ... y_i]^T$  (column vector)

For simplicity of notation, assume  $x_0 = 0$  and  $W_i = I$ .

$$H_i^T H_i = H_{i-1}^T H_{i-1} + h_i^T h_i$$

$$\hat{x}_i = (\Pi_0^{-1} + H_i^T H_i)^{-1} H_i^T Y_i$$

$$= (\Pi_0^{-1} + H_{i-1}^T H_{i-1} + h_i^T h_i)^{-1} (H_{i-1}^T Y_{i-1} + h_i^T y_i)$$

Define

$$P_i = (\Pi_0^{-1} + H_i^T H_i)^{-1}, P_0 = \Pi_0$$
  
So  $P_i = [P_{i-1}^{-1} + h_i^T h_i]^{-1}$ 

Use Matrix Inversion identity:

$$(A + BCD)^{-1} = A^{-1} - A^{-1}B(C^{-1} + DA^{-1}B)^{-1}DA^{-1}$$

$$P_i = P_{i-1} - K_i h_i P_{i-1}$$

where

$$K_i = P_{i-1}h_i^T (1 + h_i P_{i-1} h_i^T)^{-1}$$
(4)

9

Thus

$$\hat{x}_{0} = 0 
\hat{x}_{i} = P_{i}H_{i}^{T}Y_{i} 
= [P_{i-1} - K_{i}h_{i}P_{i-1}][H_{i-1}^{T}Y_{i-1} + h_{i}^{T}y_{i}] 
= \hat{x}_{i-1} + K_{i}(y_{i} - h_{i}\hat{x}_{i-1})$$

The last equality uses the facts that (i)  $\hat{x}_{i-1} = P_{i-1}H_{i-1}^TY_{i-1}$ , (ii)  $[P_{i-1} - K_ih_iP_{i-1}]h_i^Ty_i = K_iy_i$  (expand  $K_i$ , obtain this after a few manipulations).

Here we considered the weight  $W_i = I$ . If  $W_i \neq I$ , the equation for  $K_i$  modifies to (replace  $y_i$  by  $w_i^{1/2}y_i$  &  $h_i$  by  $w_i^{1/2}h_i$ , where  $w_i = (W_i)_{i,i}$ )

$$K_i = P_{i-1}h_i^T(w_i^{-1} + h_i P_{i-1}h_i^T)^{-1}$$
(5)

Also, here we considered  $y_i$  to be a scalar and  $h_i$  to be a row vector. In general:  $y_i$  can be a k-dim vector,  $h_i$  will be a matrix with k rows, and the above formulae still apply, replace 1 by I everywhere

#### **RLS** with Forgetting factor

Weight older data with smaller weight  $J(x) = \sum_{j=1}^{i} (y_j - h_j x)^2 \beta(i, j)$ 

Exponential forgetting:  $\beta(i,j) = \lambda^{i-j}, \quad \lambda < 1$ 

Moving average:  $\beta(i,j) = 0$  if  $|i-j| > \Delta$  and  $\beta(i,j) = 1$  otherwise

#### **Summarizing Recursive LS**

• In general can assume that  $y_i$  is k dimensional and so  $h_i$  has k rows. Weight matrix  $(W_i)_{i,i} = w_i$ . Solution is:

$$\hat{x}_{0} = x_{0}, P_{0} = \Pi_{0}$$

$$K_{i} = P_{i-1}h_{i}^{T}(w_{i}^{-1} + h_{i}P_{i-1}h_{i}^{T})^{-1}$$

$$P_{i} = (I - K_{i}h_{i})P_{i-1}$$

$$\hat{x}_{i} = \hat{x}_{i-1} + K_{i}(y_{i} - h_{i}x_{i})$$
(6)

• This is a recursive way to get the Regularized LS solution

$$\hat{x}_i = (\Pi_0^{-1} + H_i^T W_i H_i)^{-1} Y_i \tag{7}$$

with 
$$H_i = [h_1^T, h_2^T, ...h_i^T]^T$$
,  $Y_i = [y_1^T, y_2^T, ...y_i^T]^T$ 

# **Connection with Kalman Filtering**

The above is also the Kalman filter estimate of the state for the following system model:

$$x_i = x_{i-1}$$
  
 $y_i = h_i x_i + v_i, \ v_i \sim \mathcal{N}(0, R_i), \ w_i = R_i^{-1}$  (8)

#### **Kalman Filter Motivation**

RLS was for static data: estimate the signal x better and better as more and more data comes in, e.g. estimating the mean intensity of an object from a video sequence

RLS with forgetting factor assumes slowly time varying x

Kalman filter: if the signal is time varying, and we know (statistically) the dynamical model followed by the signal: e.g. tracking a moving object

$$x_0 \sim \mathcal{N}(0, \Pi_0)$$

$$x_i = F_i x_{i-1} + v_{x,i}, \quad v_{x,i} \sim \mathcal{N}(0, Q_i)$$

The observation model is as before:

$$y_i = h_i x_i + v_i, \ v_i \sim \mathcal{N}(0, R_i)$$

Goal: get the best (minimum mean square error) estimate of  $x_i$  from  $Y_i$ 

Cost:  $J(\hat{x}_i) = E[(x_i - \hat{x}_i)^2 | Y_i]$ 

Minimizer: conditional mean  $\hat{x}_i = E[x_i|Y_i]$ 

This is also the MAP estimate, i.e.  $\hat{x}_i$  also maximizes  $p(x_i|Y_i)$ 

## **Example Applications**

- Recursive LS:
  - Adaptive noise cancelation
  - Channel equalization using a training sequence
  - Object intensity estimation: x = intensity,  $y_i = \text{vector of intensities of object region in frame } i$ ,  $h_i = 1_m$  (column vector of m ones)
  - Keep updating estimate of location of an object that is static, using a sequence of location observations coming in sequentially
- Recursive LS with forgetting factor: object not static but drifts very slowly (e.g. floating object) or object intensity changes very slowly
- Kalman filter: Track a moving object (estimate its location, velocity at each time), when acceleration is assumed i.i.d. Gaussian

# Material adapted from

• Chapters 2, 3 of Linear Estimation, by Kailath, Sayed, Hassibi