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Abstract—Suppose that we observe noisy linear measure-
ments of an unknown signal that can be modeled as the
sum of two component signals, each of which arises from
a nonlinear sub-manifold of a high-dimensional ambient
space. We introduce Successive Projection onto INcoherent
manifolds (SPIN), a first-order projected gradient method
to recover the signal components. Despite the nonconvex
nature of the recovery problem and the possibility of
underdetermined measurements, SPIN provably recovers
the signal components, provided that the signal manifolds
are incoherent and that the measurement operator satisfies
a certain restricted isometry property. SPIN significantly
extends the scope of current signal recovery models and
algorithms for low-dimensional linear inverse problems,
and matches (or exceeds) the current state of the art in
terms of performance.

I. INTRODUCTION

Estimation of an unknown signal from linear obser-
vations is a core problem in signal processing, statistics,
and information theory. Particular attention has been
invested in problem instances where the available in-
formation is limited and noisy, and where the signals
of interest possess a low-dimensional geometric struc-
ture. Examples of such instances include morphological
component analysis [1]; sparse approximation and com-
pressive sensing [2, 3]; and affine rank minimization [4].

In this work, we will study a very general version of
the linear inverse problem. Suppose that the signal of
interest x∗ can be written as the sum of two constituent
signals a∗ ∈ A and b∗ ∈ B, where A,B are arbitrary
nonlinear sub-manifolds of the signal space RN . We are
given access to noisy linear measurements of x∗:

z = Φ(a∗ + b∗) + e, (1)

where Φ ∈ RM×N is the measurement matrix. Our
objective is to recover the pair of signals (a∗,b∗), and
thus also x∗, from z. At the outset, numerous obstacles
arise while trying to solve (1), some that might appear
to be insurmountable:
Identifiability I. Consider even the simplest case where
the measurements are noiseless and the measurement

operator is the identity, i.e., we observe x ∈ RN such
that x = a∗+b∗. In this case, x contains 2N unknowns
but only N observations and hence is fundamentally
ill-posed. Unless we make additional assumptions on
the geometric structure of the component manifolds A
and B, a unique decomposition of x into its constituent
signals (a∗,b∗) may not exist.
Identifiability II. To complicate matters, in more general
situations the linear operator Φ in (1) might have fewer
rows that columns, so that M < N . Thus, Φ possesses
a nontrivial nullspace. Indeed, we are particularly inter-
ested in cases where M � N , i.e., the nullspace of Φ
is extremely large relative to the ambient space. This
further emphasizes the problem of identifiability of the
ordered pair (a∗,b∗), given the available observations z.
Nonconvexity. Even if the above identifiability issues
were resolved, the manifolds A,B might be extremely
nonconvex, or even non-differentiable. Thus, classical
numerical methods, such as Newton’s method or steepest
descent, cannot be applied; neither can the litany of
convex optimization methods that have been designed
for linear inverse problems with certain types of signal
priors [3, 4].

In this paper, we propose a simple method called
Successive Projection onto INcoherent manifolds (SPIN)
to recover the component signals (a∗,b∗) from z. De-
spite the highly nonconvex nature of the problem and
the possibility of underdetermined measurements, SPIN
provably recovers the signal components a∗ and b∗. For
this to hold true, we will require that (i) the signal
manifolds A,B are incoherent, in the sense that the
secants of A are almost orthogonal to the secants of B;
and (ii) the measurement operator Φ satisfies a certain
restricted isometry property (RIP) on the secants of the
direct sum manifold C = A⊕B. We will formally define
these conditions in Section II.

SPIN is iterative in nature. Each iteration consists of
three steps: computation of the gradient of the error
function ψ(a,b) = 1

2 ‖z−Φ(a + b)‖2, forming signal
proxies for a and b, and orthogonally projecting the



proxies onto the manifolds A and B. The projection op-
erators onto the component manifolds play a crucial role
in algorithm stability and performance; some manifolds
admit stable, efficient projection operators while others
do not. Interestingly, SPIN exhibits a convergence rate
comparable to several state-of-the-art algorithms [5, 6],
despite the nonlinear and nonconvex nature of the above
reconstruction problem.

The core essence of our proposed approach has been
extensively studied in a number of different contexts. In
particular, SPIN is an iterative projected gradient method
with the same basic approach as two recent signal recov-
ery algorithms — Gradient Descent with Sparsification
(GraDeS) [5] and Manifold Iterative Pursuit (MIP) [7].
Our method generalizes these approaches to situations
where the signal of interest is a linear mixture of signals
arising from a pair of nonlinear manifolds. Due to this
particular structure of our setting, SPIN consists of two
projection steps (instead of one), and the analysis is
more complicated. An appealing feature of our method
is its conceptual simplicity plus its ability to generalize
to mixtures of arbitrary nonlinear manifolds.

Owing to space constraints, we state our theoretical
claims and only provide a brief outline of the proofs fol-
lowing each statement. Refer to the extended version of
this paper [8] for a thorough discussion of our approach,
with complete proofs and additional applications.

II. GEOMETRIC ASSUMPTIONS

The analysis and proof of accuracy of SPIN (Algo-
rithm 1) involves three core ingredients: (i) a geomet-
ric notion of manifold incoherence that crystallizes the
approximate orthogonality between secants of submani-
folds of RN , (ii) a restricted isometry condition satisfied
by the measurement operator Φ over the secants of
a submanifold, and (iii) the availability of projection
operators that compute the orthogonal projection of any
point x ∈ RN onto a submanifold of RN .

A. Manifold Incoherence

Given a manifold A ⊂ RN , a normalized secant, or
simply, a secant, u ∈ RN of A is a unit vector such that

u =
a− a′

‖a− a′‖
, a,a′ ∈ A, a 6= a′.

The secant manifold S(A) is the family of all unit
vectors u generated by pairs a,a′ belonging to A.

In linear inverse problems such as sparse signal ap-
proximation and compressive sensing, the assumption
of incoherence between linear subspaces, bases, or dic-
tionary elements is common. We introduce a nonlinear
generalization of this concept via the secant manifold.

Definition 1: Suppose A,B are submanifolds are RN .
Let

sup
u∈S(A), u′∈S(B)

|〈u,u′〉| = ε, (2)

where S(A),S(B) are the secant manifolds of A,B
respectively. Then, A and B are called ε-incoherent
manifolds.

By definition, the quantity ε is always positive; further,
ε ≤ 1, due to the Cauchy-Schwartz inequality. We prove
that any signal x belonging to the direct sum A ⊕ B
can be uniquely decomposed into its constituent signals,
when the upper bound on ε holds with strict inequality.

Lemma 1 (Uniqueness): Suppose that A,B are ε-
incoherent with ε < 1. Consider x = a + b = a′ + b′,
where a,a′ ∈ A and b,b′ ∈ B. Then, a = a′,b = b′.
Proof sketch. Let x1 = a+b, and x2 = a′+b′. Expand
the relation ‖x1 − x2‖2 = 0, and apply the inequality
between the arithmetic and geometric means to obtain
the uniqueness result. �
In Section III, we will see that the condition for exact
recovery of (a,b) from x will require a mild tightening
of the upper bound on ε.

B. Restricted Isometry

We address the situation when the measurement oper-
ator Φ ∈ RM×N contains a nontrivial nullspace, i.e.,
when M < N . We will require that Φ satisfies a
restricted isometry criterion on the secants of the direct
sum manifold C = A⊕ B.

Definition 2: Let C be a submanifold of RN . Then,
the matrix Φ ∈ RM×N satisfies the restricted isometry
property (RIP) on C with constant δ ∈ [0, 1) if, for every
normalized secant u belonging to the secant manifold
S(C), we have that

1− δ ≤ ‖Φu‖2 ≤ 1 + δ. (3)

The notion of restricted isometry (and its general-
izations) is an important component in the analysis of
many algorithms in sparse approximation, compressive
sensing, and low-rank matrix recovery [3, 4]. While the
RIP has traditionally been studied in the context of
sparse signal models, (3) generalizes of this notion to
arbitrary nonlinear manifolds. A key result [9] states
that under certain upper bounds on the curvature of
the manifold C, there exist probabilistic constructions of
matrices Φ ∈ RM×N that satisfy the RIP on C such that
the number of rows of Φ is proportional to the intrinsic
dimension of C, rather than the ambient dimension N of
the signal space.
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Algorithm 1 SPIN
Inputs: Observation matrix Φ, measurements z, pro-
jection operators PA(·),PB(·), number of iterations
T , step size η
Outputs: Estimated signal components â ∈ A, b̂ ∈ B
Initialize: a0 = 0, b0 = 0, r = z, k = 0
while k ≤ T do

gk ← ΦT r
ãk ← ak + ηgk, b̃k ← bk + ηgk
ak+1 ← PA(ãk), bk+1 ← PB(b̃k)
r← z− Φ(ak+1 + bk+1)
k ← k + 1

end while
return (â, b̂)← (aT ,bT )

C. Projections onto Manifolds

Given an arbitrary nonlinear manifold A ∈ RN , we
define the operator PA(·) as the Euclidean projection
projector onto A:

PA(x) = arg min
x′∈A

‖x′ − x‖2 . (4)

We observe that for arbitrary nonconvex manifolds A,
the minimization problem (4) may not yield a unique
optimum. Technically, therefore, PA(x) is a set-valued
operator. For ease of exposition, PA(x) will henceforth
refer to any arbitrarily chosen element of the set of
signals that minimize the `2-error in (4).

III. THE SPIN RECOVERY ALGORITHM

We propose an efficient algorithm to solve the linear
inverse problem (1) and detail it in pseudocode form
in Algorithm 1. The algorithm can be viewed as a
generalization of first order recovery methods that have
been developed for a number of different models [5, 7].
The key innovation in SPIN is that we formulate two
proxy vectors for the signal components, ãk and b̃k,
and project these onto the corresponding manifolds A
and B.

We show that SPIN possesses strong uniform recovery
guarantees, even under the presence of limited and
highly inaccurate measurements. These guarantees are
comparable to those exhibited by existing state-of-the-art
signal recovery algorithms for sparse approximation and
compressive sensing, while encompassing a very broad
range of nonlinear signal models.

Theorem 1 (Stable recovery): Suppose A,B are ε-
incoherent manifolds in RN . Let Φ be a measurement
matrix with restricted isometry constant δ over the direct
sum manifold C = A ⊕ B. Suppose we observe noisy
linear measurements z = Φ(a∗ + b∗) + e, where a∗ ∈

A,b∗ ∈ B. Suppose 0 ≤ δ < (1− 11ε)/(3 + 7ε). Then,
SPIN (Algorithm 1) with step size η = 1/(1 + δ) and
projection operators PA,PB outputs aT ∈ A,bT ∈ B
such that ‖z−Φ(aT + bT )‖2 ≤ β ‖e‖2 +ν in no more
than T = d 1

log(1/α) log ‖z‖
2

2ν e iterations for any ν > 0.
Here, α, β are moderately sized positive constants.
Proof sketch. For a given set of measurements z obeying
(1), define the error function ψ : A × B → R as:
ψ(a,b) = 1

2 ‖z−Φ(a + b)‖2 . In the extended version
of this paper [8], we show that at any iteration k, the
SPIN signal estimates satisfy the relation

ψ(ak+1,bk+1) ≤ αψ(ak,bk) + C ‖e‖2 , (5)

where

α =
2δ

1−δ + 6 1+δ
1−δ

ε
1−ε

1− 4 1+δ
1−δ

ε
1−ε

, C =
1
2 + 5 1+δ

1−δ
ε

1−ε

1− 4 1+δ
1−δ

ε
1−ε

.

Equation (5) describes a linear recurrence relation for
the sequence of positive real numbers ψ(ak,bk), k =
0, 1, 2, . . . with leading coefficient α < 1. By the choice
of initialization, ψ(a0,b0) = ‖z‖2

2 . Therefore, for all
k ∈ N, we have the relation

ψ(ak,bk) ≤ αkψ(a0,b0) +
C

1− α
‖e‖2 .

Choosing β = C
1−α , and k ≥ T such that T =

d 1
log(1/α) log ‖z‖

2

2ν e, the result follows. �
Some implications of Theorem 1 are as follows. For

the special case where there is no measurement noise
(i.e., e = 0), Theorem 1 states that after a finite number
of iterations, SPIN outputs signal component estimates
(â, b̂) such that

∥∥∥z−Φ(â + b̂)
∥∥∥ < ν for any desired

precision parameter ν. Since we can set ν to an arbitarily
small value, we have that the SPIN estimates (â, b̂)
converges to the true signals (a∗,b∗).

Further, suppose that the one of the components
manifolds is the trivial (zero) manifold; then we have
that ε = 0. In this case, SPIN reduces to the Manifold
Iterative Pursuit (MIP) algorithm for recovering signals
from a single manifold [7]. Moreover, the condition on
δ reduces to 0 ≤ δ < 1/3, which exactly matches the
condition required for guaranteed recovery using MIP.

Lastly, the condition in Theorem 1 on the inequalities
linking the isometry constant δ and the manifold incoher-
ence parameter ε implies that ε < 1/11. This represents
a mild tightening of the condition on ε required for
a unique decomposition (Lemma 1), even with full
measurements (i.e., when Φ is the identity operator, or
more generally, when δ = 0).
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IV. APPLICATIONS

The two-manifold signal model described in this paper
is applicable to a wide variety of problems. We discuss
two representative instances.

A. Articulation Manifolds

Consider the set of signals M ⊂ RN that are gen-
erated by varying K parameters θ ∈ Θ, Θ ⊂ RK .
Then, we say that the signals trace out a nonlinear
K-dimensional articulation manifold in RN , where θ
is called the articulation parameter vector. Examples
of articulation manifolds include: 1D acoustic chirps
of varying frequencies (where θ represents the chirp
rate); 2D images of a white disk translating on a black
background (where θ represents the planar location of the
disk center); and 2D images of a 3D object with variable
pose (where θ represents the 6D pose parameters, three
corresponding to spatial location and three corresponding
to orientation).

We consider the class of compact, smooth K-
dimensional articulation manifolds M ⊂ RN . For such
manifolds, it has been shown [9] that there exist ran-
domized constructions of measurement operators Φ ∈
RM×N that satisfy the RIP on the secants of M with
constant δ, and with probability at least ρ, provided

M ≥ O
(
K

log(CMNδ−1) log(ρ−1)
δ2

)
,

for some constant CM that depends only on the smooth-
ness and volume of the manifold M. Therefore, the
range space of Φ is proportional merely to the number
of articulation parameters K, and only logarithmic in
the ambient dimension N . Moreover, given such a mea-
surement matrix Φ with isometry constant δ < 1/3 and
a projection operator PM(·) ontoM, any signal x ∈M
can be reconstructed from its compressive measurements
y = Φx using Manifold Iterative Pursuit (MIP) [7].

We generalize this setting to the case where the
unknown signal of interest arises as a mixture of signals
from two manifolds A and B. For instance, suppose
we are interested in the space of 2D images, where
the manifolds A,B comprise of translations of fixed
template images IA(t), IB(t), where t denotes the 2D
domain over which the image is defined. Then, the signal
of interest is a 2D image of the form

x∗ = a∗ + b∗ = IA(t + θ1) + IB(t + θ2),

where θ1, θ2 denote the unknown translation parameters.
The problem is to recover (a∗,b∗), or equivalently
(θ1, θ2), given the measurements z = Φ(a∗ + b∗).

We demonstrate that SPIN offers an easy, efficient
technique to recover the component images. Figure 1(a)

Original image Disk component Square component

Fig. 1. SPIN recovery of a 64 × 64 image from compressive
measurements. The image consists of the linear superposition of
a disk and a square of fixed pre-specified sizes, but the locations
of the centers of the disk and the square are unknown. Here,
the signal length N = 64 × 64 = 4096, and the number of
linear measurements M = 50. SPIN perfectly reconstructs both
components from just M/N = 1.2% measurements.

displays the results of SPIN recovery of a 64×64 image
from merely M = 50 random Gaussian measurements.
The unknown image consists of the linear sum of
arbitrary translations of template images IA(t), IB(t).
Here, the templates IA(t), IB(t) are assumed to be
smoothed 0/1 images on a black background of a white
disk and a white square respectively. From Fig. 1 we
observe that SPIN is able to perfectly recover the com-
ponent signals from very limited observations. Here,
the operator PA(x) onto the manifold A consists of
running a matched filter between the template I(t) and
the input signal x, and returning I(t + θ̂), where the
parameter value θ̂ corresponds to the 2D location of the
maximum of the matched filter response. This can be
very efficiently carried out in O (N logN) operations
using the Fast Fourier Transform (FFT).

B. Signals in Impulsive Noise

In some situations, the signal of interest x might be
corrupted with impulsive noise (or shot noise) prior to
signal acquisition via linear measurements. For example,
consider Fig. 2(a), where the Gaussian pulse is the signal
of interest and the spikes correspond to the undesirable
noise. In this case, the linear observations are more
accurately modeled as

z = Φ(x + n), such that x ∈M,

and n is a K ′-sparse signal in the canonical basis.
Therefore, SPIN can be used to recover x from z,
provided that the manifold M is incoherent with the
set of sparse signals ΣK′ , and Φ satisfies the RIP on the
direct sum M⊕ ΣK′ .

Figure 2 displays the results of a numerical experiment
that illustrates the utility of SPIN in this setting. We
consider a manifold of 1D signals of length N = 10000
comprising shifts of a Gaussian pulse of fixed width
g0 ∈ RN . The unknown signal x is an element of this
manifold M and is corrupted by K ′ = 10 spikes of
unknown magnitudes and locations. This degraded signal
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(a) Original signal. (b) Manifold component. (c) Noise component.

Fig. 2. SPIN recovery of a shifted Gaussian pulse from compressive measurements. The shift parameter of the pulse is unknown, and
the signal is corrupted with K′-sparse, impulsive noise of unknown amplitudes and locations. N = 10, 000, K′ = 10, M = 150.
(a) Original signal. (b) Reconstructed Gaussian pulse (Recovery SNR = 80.09 dB). (c) Estimated noise component. SPIN perfectly
reconstructs both components from just M/N = 1.5% measurements.
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Fig. 3. Monte Carlo simulation of SPIN recovery, averaged
over 100 trials. In each trial, the measured signal is the sum
of a randomly shifted Gaussian pulse and a random K′-sparse
signal. SPIN can tolerate a higher K′ with increasing M .

is sampled using M = 150 random measurements to
obtain an observation vector z. For this problem, the
projection operator PM(·) consists of a matched filter
with the template pulse g0, while the projection operator
PΣK′ (·) simply returns the best K ′-term approximation
in the canonical basis. Assuming that we have knowledge
of the number of nonzeros in the noise vector n, we can
use SPIN to reconstruct both x and n. We observe from
Fig. 2(b) that SPIN recovers the true signal x with near-
perfect accuracy.

Figure 3 plots the number of measurements M vs.
the signal reconstruction error (normalized relative to the
signal energy, and plotted in dB). We observe that by
increasing M , we can tolerate an increased number K ′

of nuisance spikes; we can show that this relationship
between M and K ′ is in fact linear [8]. This result can
be extended to any situation where the signals of interest
obey a “hybrid” model that is a mixture of a nonlinear
manifold and the set of sparse signals.

V. SUMMARY

We have proposed a projected gradient-descent algo-
rithm (SPIN) for the recovery of signals originating from
a pair of incoherent manifolds, given limited and noisy
measurements of their linear sum. For clarity and brevity,

we have focused our attention on signals belonging to the
direct sum of two signal manifolds. However, SPIN (and
its accompanying proof mechanism) can be conceptually
extended to sums of any finite number Q of manifolds.
Refer to the extended version of this paper [8] for full
proofs, detailed discussions, and a comparison of SPIN
to classical approaches.
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