
Fast Algorithms for Structured Sparsity
(ICALP 2015 Invited Tutorial)

Chinmay Hegde
Iowa State University
chinmay@iastate.edu

Piotr Indyk
MIT

indyk@mit.edu

Ludwig Schmidt
MIT

ludwigs@mit.edu

Abstract

Sparsity has become an important tool in many mathematical sciences
such as statistics, machine learning, and signal processing. While sparsity
is a good model for data in many applications, data often has additional
structure that goes beyond the notion of “standard” sparsity. In many cases,
we can represent this additional information in a structured sparsity model.
Recent research has shown that structured sparsity can improve the sample
complexity in several applications such as compressive sensing and sparse
linear regression.

However, these improvements come at a computational cost, as the data
needs to be “fitted” so it satisfies the constraints specified by the sparsity
model. In this survey, we introduce the concept of structured sparsity, ex-
plain the relevant algorithmic challenges, and briefly describe the best known
algorithms for two sparsity models. On the way, we demonstrate that struc-
tured sparsity models are inherently combinatorial structures, and employ-
ing structured sparsity often leads to interesting algorithmic problems with
strong connections to combinatorial optimization and discrete algorithms.
We also state several algorithmic open problems related to structured spar-
sity.

1 Introduction
Over the past two decades, sparsity has emerged as an important model for data
in several fields including signal processing, statistics, and machine learning. In a
nutshell, sparsity allows us to encode structure present in many relevant types of

chinmay@iastate.edu
indyk@mit.edu
ludwigs@mit.edu

(a) Sparse image (b) Dense image (c) Wavelet coefficients

Figure 1: Examples of sparsity. Subfigure (a) contains an image from the Hubble
space telescope [34]. The image is sparse because it contains a small number
of bright pixels. The castle in Subfigure (b) [12] is not sparse, but its wavelet
coefficients in Subfigure (c) give a much sparser representation.

data but still remains a simple concept that is amenable to mathematical analysis
and efficient algorithms. Informally, we say that a vector or a matrix are (approxi-
mately) sparse if they contain only a small number of non-zero entries or are well
approximated by a small subset of their coefficients.

Examples of sparsity. As a simple illustration of sparsity, consider the image
of space in Figure 1 (a). Clearly, the image contains only a small number of bright
pixels while the majority of pixels is very dark and hence approximately zero.
Therefore, the image can be modeled as a sparse matrix or a sparse vector (for the
latter, we simply stack the image columns to form a large vector).

While common in some scientific domains, “natural” images are rarely the
combination of a black background with a small number of bright point sources.
For instance, the picture of a castle in Figure 1 (b) contains many pixels in differ-
ent shades of grey and only a small number of very dark (and hence approximately
zero) pixels. Although this prevents us from modeling the canonical representa-
tion of Figure 1 (b) as sparse, research in signal processing has shown that many
classes of images are often significantly more sparse when represented in a suit-
able basis. In particular, the wavelet basis often gives a sparse representation of
natural images, e.g., see Figure 1 (c) for the wavelet coefficients of the castle im-
age.1 A wide range of algorithms for sparse processing can also be applied when
the data is sparse in some transform domain.

1The main technical content of this survey requires no prior knowledge of wavelets or other
concepts from signal processing.

Applications of sparsity. As we have seen above, sparsity allows us to encode
structure in several types of data. In many applications, utilizing this structure
leads to significant performance improvements over worst-case assumptions, and
hence there is a wide range of algorithms building on the concept of sparsity.
Some of these applications are the following:

Image compression. The popular JPEG compression standard is engineered for
the common case that the input image is sparse when represented in the
Fourier basis. By storing only the small number of large coefficients, JPEG
can save space compared to a dense representation of all coefficients in the
image. At the same time, JPEG incurs only a small loss in image quality
from discarding the small coefficients.

Denoising. One approach to denoising signal and image data is to assume that
the large coefficients contain the salient information about our data while
the small coefficients contain mostly noise. Thus, removing the small coef-
ficients can reduce the amount of noise in the data.

Compressive sensing. The goal in compressive sensing is to recover a signal
from a small number of measurements. Over the past decade, a large body
of research has established that this is possible in a variety of settings when
the signal is sparse.

Sparse linear regression. High-dimensional statistics studies problems in which
the number of unknown parameters can be significantly larger than the num-
ber of data samples. While these cases are out of reach for traditional ap-
proaches such as linear least squares, exploiting sparsity of the parameters
can lead to problems that are both information-theoretically and computa-
tionally tractable.

Sparse coding. Sparsity is also employed in popular machine learning algorithms.
One instance is sparse coding (also known as dictionary learning), which is
an unsupervised learning algorithm that automatically finds a sparse repre-
sentation for a given data set. The sparse coefficients and the corresponding
basis elements then often correspond to relevant features of the data.

1.1 Structured sparsity
While basic sparsity usually captures some structure in our problem, we often pos-
sess additional prior information about the particular type of data we are working
with. For instance, consider Figure 1 (a). In addition to the image being sparse,
the bright pixels of the image also form a small number of clusters instead of being

(a) Tree-structured sparsity (b) Unstructured sparsity

Figure 2: Structured vs unstructured sparsity. Since wavelet coefficients are de-
fined at multiple scales, they can naturally be arranged as a balanced tree. In some
cases (Subfigure (a)), we know that the large coefficients tend to form a rooted
subtree as opposed to being spread over the entire tree of wavelet coefficients
(Subfigure (b)). Using tree-structured sparsity can lead to a better compression
ratio in image encoding and better sample complexity in sparse recovery.

randomly spread over the image as individual bright pixels. Since this structure is
shared by similar astronomical images, we therefore expect that the large coeffi-
cients form a small number of connected components in this type of data.

Similarly, the wavelet coefficients in Figure 1 (c) also contain additional struc-
ture beyond sparsity. Due to the hierarchical nature of the wavelet decomposition,
the wavelet coefficients can be arranged as a balanced tree, and the large coeffi-
cients tend to form a rooted subtree. See Figure 2 for an illustration and Section 3
for a more detailed explanation.

Another common form of structure is group sparsity. For instance, consider
a linear regression setting where each covariate indicates the expression level of
a certain gene and we want to predict the outcome of a certain disease. It is a
natural assumption that the disease outcome depends only on a small number of
genes. Moreover, we sometimes know from biology that certain genes belong to
functional groups that are usually active or inactive together. In those cases, we
expect that the sparsity pattern of our regression parameters can be explained as
the union of a small number of such groups.

All three examples share a similar theme: sparsity captures important “pri-
mary” structure in the data, but there is also rich “secondary” structure beyond the
fact that the data is sparse. Since sparsity has turned out to be a useful ingredient
in many fields, this poses a natural question: How can we encode such secondary
structure, and how can we utilize it in our applications of interest? In the rest
of this survey, we will address these questions and show that ideas from discrete
algorithms and combinatorial optimization can lead to novel algorithms for the
resulting problems.

As an illustration of how structured sparsity can be beneficial, consider image
compression with wavelet coefficients. In this case, we can think of our nonzero

coefficients (i.e., the coefficients we wish to encode) as a subtree in a larger tree
of all available wavelet coefficients. To give a quantitative comparison, let s be
the number of nonzero coefficients and d be the total number of wavelet coef-
ficients (most of which are zero). Without structure in our sparsity pattern, we
would require O(s log d) bits to store the locations of the nonzeros. With the tree
assumption, we only need to store a constant number of bits per node, which re-
quires only O(s) bits in total. Specifically, consider a traversal of the tree that
starts and finishes at the root and visits each edge twice. Such a traversal can be
described by labeling each node with two bits that specify whether the left child
(or the right child, respectively) is non-empty.

As a result, structured sparsity leads to an improved compression performance.
In fact, this insight is at the core of the influential Embedded Zerotrees of Wavelet
transforms (EZW) algorithm [49].

1.2 Structured sparsity in sparse recovery
A large part of this survey is focused on structured sparsity in the context of
sparse recovery problems such as compressive sensing and sparse linear regres-
sion. Here, structured sparsity is often a desirable ingredient because it allows us
to reduce the sample complexity: a structured sparse vector can usually be recov-
ered from asymptotically fewer observations than an arbitrarily sparse vector. Due
to the wide applicability of sparse recovery problems, there is also a wide range
of sparsity structures that have been studied, such as block sparsity, tree sparsity,
cluster sparsity, and others (see later sections).

One way of encoding these sparsity structures in a common framework is via
structured sparsity models. The idea behind this concept is that the essential fea-
tures of structured sparse data can often be captured by restricting the support sets
of the corresponding vectors (the support of a vector is the set of indices corre-
sponding to nonzero coefficients). While “standard” sparsity makes no assump-
tions about the supports besides a bound on their cardinality, a structured sparsity
model permits only supports sets with a certain structure. Continuing the wavelet
tree example from Figure 2 (a), the corresponding structured sparsity model con-
tains only supports that have both a bounded cardinality and form a subtree of the
wavelet coefficient tree.

In addition to formulating sparsity structures in a common language, struc-
tured sparsity models also allow us to clearly separate sparse recovery algorithms
from the sparsity model we want to employ. In particular, there are several sparse
recovery algorithms that can be adapted to an arbitrary structured sparsity model
as long as we supply a model-projection oracle as a subroutine for the recovery
algorithm. Intuitively, a model-projection oracle finds the best approximation of
an arbitrary input vector with a vector in our sparsity model of interest. More

precisely, letM be the set of vectors in our sparsity model and let x ∈ Rd be an
arbitrary real vector. Then a model projection oracle PM(x) : Rd → Rd for the
modelM satisfies

PM(x) = arg min
x′∈M

‖x − x′‖22 . (1)

Given a model projection oracle satisfying guarantee (1), we can directly instanti-
ate known results in order to construct an efficient algorithm for the sparse recov-
ery problem. Hence the main algorithmic challenge is to design efficient model
projection oracles for a given sparsity model. In the rest of this survey, we will
see a variety of model projection algorithms for Problem (1) and suitable relax-
ations of this guarantee. It turns out that many sparsity structures give rise to
model projection problems that are closely related to questions studied in discrete
algorithms and combinatorial optimization.

1.3 Related work
There is a wide range of work on utilizing structured sparsity in sparse recovery,
e.g., [53, 37, 22, 28, 39, 40, 35, 11, 46, 43, 48, 20]. The different approaches
employ a wide range of techniques, including convex programming, Bayesian
methods, and iterative algorithms. We refer the reader to the surveys [17, 10, 52]
for an overview of these approaches.

In this survey, we focus on the model-based compressive sensing framework
introduced in [5], which employs an iterative approach to sparse recovery. This
framework enables a clear separation between the “outer” sparse recovery algo-
rithms (described in Section 5) and the “inner” projection oracles specific to par-
ticular sparsity models (described in Sections 3 and 4).

1.4 Outline of the paper
In Section 2, we give a formal definition of structured sparsity models and intro-
duce the main algorithmic problems. We illustrate these definitions with block
sparsity, which is a simple sparsity model. Sections 3 and 4 then give algorithms
for two sparsity models that require more sophisticated techniques: tree sparsity
and graph sparsity. Section 5 explains sparse recovery problem, which is the main
application of our algorithms for structured sparsity.

1.5 Notation
Let [d] be the set {1, 2, . . . , d}. We say that a vector x ∈ Rd is s-sparse if at most s
of its coefficients are nonzero. The support of x contains the indices corresponding
to nonzero entries in x, i.e., supp(x) = {i ∈ [d] | xi , 0}. Given a subset S ⊆ [d],

we write xS for the restriction of x to indices in S : we have (xS)i = xi for i ∈ S

and (xS)i = 0 otherwise. The `2-norm of x is ‖x‖2 =

√∑
i∈[d] x2

i .

2 Structured sparsity models
In this section, we formally define the notion of a structured sparsity model and
illustrate the definition with block sparsity as a simple example. We use structured
sparsity as a common framework for encoding prior knowledge that goes beyond
the assumption that our data of interest is s-sparse. In particular, a structured
sparsity model imposes restrictions on the allowed supports, which leads to the
following definition:

Definition 1 (Structured sparsity model [5]). Let M be a family of supports, i.e.,
M = {S 1, S 2, . . . , S L} where each S i ⊆ [d]. Then the corresponding structured
sparsity modelM is the set of vectors supported on one of the S i:

M = {x ∈ Rd | supp(x) ⊆ S for some S ∈ M} .

Depending on the context, we refer to either the family of supports M or the
corresponding set of vectorsM as a structured sparsity model. It is worth noting
that the structure we encode is described entirely by the allowed locations of the
nonzero coefficients: a structured sparsity model imposes no restrictions on the
actual coefficient values besides whether they are zero.

Usually, the sizes of the individual supports |S i| are uniformly bounded by a
common sparsity parameter s such that the vectors in M are both s-sparse and
have a restricted support. For many sparsity models of interest, the “cardinality”
of the model, i.e., the number of allowed supports |M|, is significantly smaller than
the set of all possible s-sparse supports

(
d
s

)
. In sparse recovery, the smaller number

of relevant supports |M| �
(

d
s

)
leads to an improved sample complexity and is one

of the main reasons for employing a structured sparsity model.
In most cases, the family of allowed supports M = {S 1, S 2, . . . , S L} is not

given as an explicit family of sets, but M rather is implicitly defined through a
common property shared by all allowed supports. For instance, consider an ap-
plication where our vectors of interest are split into consecutive blocks of B non-
overlapping coefficients. In the block sparsity model, we then assume that only
s/B blocks contain nonzeros, i.e., the vector is s-sparse and the nonzeros occur
only in a small number of contiguous blocks. This model can be seen as a dis-
cretization of the cluster sparsity structure present in Figure 1 (a), i.e., the clusters
of nonzero coefficients can occur only in a fixed set of locations in the vector (for a
more flexible sparsity model, see Section 4). Figure 3 illustrates the block sparsity
model with an example.

(a) All 2-sparse vectors. (b) Block-sparse vectors.

Figure 3: Block sparsity. Subfigure (a) shows all 2-sparse supports for ambient
dimension d = 6. Subfigure (b) shows all supports that are both 2-sparse and block
sparse with block size B = 2. The number of structured supports is significantly
smaller than the number of all 2-sparse supports. This fact leads to improved
sample complexity in sparse recovery.

2.1 Model projection

For a given sparsity modelM, one of the main algorithmic problems is to project
an arbitrary vector x ∈ Rd into the sparsity model, i.e., to return the best approx-
imation of the given vector with a vector x′ ∈ M. Note that once we have fixed
a support supp(x′) = S ∈ M, the approximation error ‖x − x′‖22 is minimized by
setting the coefficients of x′ such that they are equal to x for indices in S . Hence
the model projection problem can be reduced to finding the best support in M.
This leads to the following definition:

Definition 2 (Model projection [5]). Let M be a structured sparsity model. A
model projection oracle forM is an algorithm P(x) : Rd → M with the following
guarantee: for any x ∈ Rd, let S = P(x). Then we have

‖x − xS ‖
2
2 = min

S ′∈M
‖x − xS ′‖

2
2 . (2)

Model projection algorithms satisfying the guarantee in Definition 2 are a key
ingredient in sparse recovery algorithms. Given such a model projection algo-
rithm, we can instantiate known results from sparse recovery and directly obtain
a recovery algorithm for the corresponding sparsity model [5]. Since the model
projection algorithm is invoked multiple times in the overall recovery algorithm,
achieving a good time complexity for the model projection step is often an impor-
tant goal. In many cases, the other components of the recovery algorithm run in
nearly-linear time, so an ideal model projection algorithm would satisfy Definition
2 and run in nearly-linear time for any value of s.

Model projection algorithms are also used outside of sparse recovery. Directly
applying a model projection algorithm to a known vector extracts a representation

that captures most of the large coefficients while satisfying the structural con-
straints encoded in the model. Such an approach can reduce the given data to
its essential features or extract interesting structure. For instance, some methods
in seismic processing and event detection are essentially model projection algo-
rithms [51, 45].

For the block sparsity model introduced above, the model projection prob-
lem can be solved rather easily. First, we observe that we can always only se-
lect s/B blocks of the vector due to the structural constraint. Moreover, once
we have chosen a set of blocks, we minimize the approximation error ‖x − xS ‖2
by including all indices of our selected blocks in the final support S . Since
‖x − xS ‖

2
2 = ‖x‖22 − ‖xS ‖

2
2, our task reduces to finding the s/B blocks with the

maximum sum of squared coefficients. So for each block j ∈ {0, . . . , s/B − 1}, we
compute its weight

w(j) =

(j+1)s/B∑
i= js/B+1

x2
i

and then simply select the s/B blocks with the largest weights w(j). Besides re-
turning the optimal approximation, this algorithm also runs in linear time. While
the model projection problem turns out to be simple for block sparsity, other spar-
sity models lead to significantly more complicated problems.

2.2 Approximate model projections.
In many cases (see e.g., Section 3) the best known algorithms for exact model
projections are prohibitively slow to run on large or even medium-scale data sets.
In other cases, the exact model projection problem as stated in Definition 2 is even
NP-hard. A fruitful way to circumvent these complexity barriers is via approxi-
mation. The natural relaxation of the exact model projection problem is to allow
an approximation factor in Equation (2):

‖x − xS ‖
2
2 ≤ c · min

S ′∈M
‖x − xS ′‖

2
2 (3)

where c > 1 is a fixed constant. While this guarantee is already useful in some
applications such as feature extraction or denoising, it is not sufficient for stable
sparse recovery, at least using known recovery algorithms. In particular, for any
constant c > 1, it is possible to construct an adversarial projection oracle that
satisfies Equation (3) but prevents sparse recovery algorithms from succeeding
for sufficiently large dimension d.

The reason behind this phenomenon is as follows. First, Equation (3) guar-
antees that the support S is a good approximation to the input vector x as long
as some support in the model is a good approximation. However, consider the

case that the input x is far from all vectors in the model, i.e., minS ′∈M‖x − xS ′‖2
is large. Then even the empty support can satisfy Equation (3) as long as the
improvement achieved by the optimal support is less than the slack introduced
by allowing c > 1. More formally, the approximation error improvement of the
optimal support S ∗ compared to the empty set is∥∥∥x − x{}

∥∥∥2

2
− ‖x − xS ∗‖

2
2 = ‖x‖22 − ‖x − xS ∗‖

2
2 = ‖xS ∗‖

2
2 .

So as long as the approximation slack in Equation (3) is large enough so that it
satisfies

‖xS ∗‖
2
2 ≤ (c − 1) min

S ′∈M
‖x − xS ′‖

2
2 = (c − 1)‖x − xS ∗‖

2
2

we get ∥∥∥x − x{}
∥∥∥2

2
= ‖xS ∗‖

2
2 + ‖x − xS ∗‖

2
2 ≤ c · min

S ′∈M
‖x − xS ′‖

2
2 .

Then an approximate projection oracle can simply return the empty set.
Thus, in order to get provable guarantees for structured sparse recovery, we

also need another notion of approximation instead of only relaxing Definition 2.
The failure case of Equation (3) suggests a possible fix: to prevent an approximate
oracle from simply returning an empty set, we should also require that the support
captures at least a constant fraction of the energy compared to the optimal support.
This idea leads us to defining a second notion of approximate projection oracles,
which complements Equation (3). The two resulting definitions are as follows:

Definition 3 (Tail approximation). Let M be a structured sparsity model. A tail
approximation oracle for M is an algorithm T (x) : Rd → M with the following
guarantee: for any x ∈ Rd, let S = T (x). Then we have

‖x − xS ‖
2
2 ≤ cT · min

S ′∈M
‖x − xS ′‖

2
2 ,

where cT is an arbitrary fixed constant (independent of d, x, andM).

Definition 4 (Head approximation). LetM be a structured sparsity model. A head
approximation oracle for M is an algorithm H(x) : Rd → M with the following
guarantee: for any x ∈ Rd, let S = H(x). Then we have

‖xS ‖
2
2 ≥ cH ·max

S ′∈M
‖xS ′‖

2
2 ,

where cT > 0 is an arbitrary fixed constant (independent of d, x, andM).

It is worth noting that these two guarantees are complementary and in general,
one does not imply the other. The argument above already shows that tail approx-
imation does not imply head approximation. For the opposite direction, consider

an input vector x that belongs to the sparsity model, i.e., its tail approximation er-
ror is zero. While a tail approximation oracle must return a support with error zero
in this case, a head approximation oracle can still return a support that captures
only a constant fraction of the optimal solution.

Once we have approximate projection oracles (one satisfying Definition 3 and
one satisfying Definition 4), we can instantiate the approximation-tolerant sparse
recovery framework introduced in [32]. The framework provides general sparse
recovery algorithms that invoke approximate projection oracles in a black-box
fashion. As long as cT and cH are fixed constants, the sample complexity of the
sparse recovery algorithm is only affected by constant factors and the final recov-
ery guarantees are essentially the same as in the case of exact projection algo-
rithms. The number of invocations of the head and tail approximation algorithms
are the same up to constant factors, so the time complexity of the slower algorithm
determines the overall time complexity.

Besides relaxing the approximation error guarantees, the framework in [32]
also allows projections into larger sparsity models. For instance, consider the case
of block sparsity: instead of returning a support formed by s/B blocks with total
sparsity s, a projection oracle could also return 2s/B blocks with total sparsity 2s.
As long as the size of the relaxed model is comparable to the original model, the
sample complexity will only be affected by constant factors. In particular, let M′

be the image of a projection oracle. As long as logM′ = O(logM), the sample
complexity of the sparse recovery algorithm is unchanged. This second relaxation
of the projection guarantees turns out to be crucial for several approximate projec-
tion algorithms because it allows us to work with bicriterion guarantees that offer
trade-offs between the approximation ratio and the support size. Sections 3 and 4
give an overview of several such algorithms.

3 Tree sparsity
The tree-structured sparsity model (or tree-sparsity model, for short) is perhaps
the simplest example of a structured sparsity model where implementing the model
projection oracle is non-trivial. In this model, we assume that the d coefficients
of the vector x can be arranged as the nodes of a full b-ary tree T of height h (in
what follows, we assume b = 2, i.e., we assume that the tree is binary). Then,
the tree-sparsity model contains all sets of nodes that form a rooted subtree of T .
Figure 2 provides an example of one such set.

The tree-sparsity model is motivated by hierarchical decompositions of im-
ages, e.g., the wavelet representation depicted in Figure 1 (c). Such representa-
tions map each image into several levels of coefficients, where each level corre-
sponds to an appropriate “resolution” of the image. Large coefficients in such rep-

resentations are typically caused by edges and other image discontinuities. Since
each such discontinuity is typically detected in many levels of the hierarchy (all
the way to the root), the following property usually holds: if a coefficient in a
given node is large, then the coefficient in its parent tends to be large as well. This
motivates modeling the supports as subtrees.

Exact model projection. Given a vector x, the model projection oracle for the
tree sparsity model needs to compute a rooted subtree T of size s that maximizes
the sum of squares of the coefficients xi (weights) corresponding to the nodes in
T . The hierarchical definition of the problem makes it amenable to the dynamic
programming approach (first introduced for this problem in [3]).

Specifically, suppose that for a given node i and sparsity s, we want to compute
a tree of size t rooted at i that maximizes the total weight of the selected nodes (we
denote this maximum weight by W[i, t]). This can be accomplished recursively
by selecting i and then, for an appropriate parameter r, selecting the maximum
weight subtree of size r rooted in the left child of i, as well as the maximum
weight subtree of size t− r− 1 rooted in the left child of i. Since the optimal value
of r is not known a priori, the algorithm must enumerate all possible values. This
leads to a simple recursive formula

W[i, t] = max
r

x2
i + W[left(i), r] + W[right(i), t − r − 1]

The values W[i, t] can be computed in a bottom-up fashion after an appropriate
initialization. The corresponding trees can be also recovered by “re-tracing” the
optimal weight values in a standard manner.

Since i ranges between 1 and d while t ranges between 0 and s, it follows that
the array W[i, t] has size O(ds), and therefore the whole algorithm runs in O(ds2)
time. However, it turns out that the above analysis overestimates the real space
and time cost of the algorithm. Specifically, observe that for most nodes i, one
can obtain an upper bound on feasible values of t that is much lower than s. For
example, if i is a leaf, then only possible values of t are 0 and 1, as the left and
right subtrees of i are empty. Thus, the total number of feasible entries W[i, t]
over all leaves i is O(d). In fact, the same bound holds for any level in the tree
T . Since there are log d levels in T , it follows that the the actual space usage of
the algorithm is O(d log d), not O(ds). This immediately implies a running time
bound of O(ds log d). By using a more careful analysis, one can improve it further
to a “rectangular” running time of O(ds) [15]. This is the best known running time
for this problem.
Open problem 1: Is there an algorithm that computes the tree-sparse projec-
tion in time faster than O(ds)? Alternatively, is there any evidence that such an
algorithm does not exist?

Approximate algorithms. The running time of O(ds) is relatively practical when
the value of s is small. However, in many applications the sparsity s is a constant
fraction (say, 5%) of d. In such scenarios, the running time of the algorithm be-
comes quadratic in d, which makes the algorithm impractical for large inputs (e.g.,
for images with megapixel resolution). This necessitated the development of faster
heuristics [2] and approximation algorithms [18, 9, 30, 31, 47] for this problem.
In what follows, we present some illustrative examples of such algorithms.

Perhaps the first approximation algorithm of this type is due to Donoho [18].
His algorithm, called complexity-penalized residual sum-of-squares (CPRSS), runs
in linear time. However, instead of solving the above problem, it solves its “Lan-
grangian relaxation”. Specifically, for a parameter λ > 0, the algorithm finds a
tree T (not necessarily of size s) that maximizes the sum of weights in T minus
λ|T |, or more formally, ‖xT ‖

2
2 − λ|T |. That is, instead of specifying a fixed sparsity

budget, the modified problem instead introduces a penalty for each node used in
the tree. The tree that optimizes the new objective can be computed using a dy-
namic programming approach similar to the one seen earlier. However, since the
new problem does not involve a fixed sparsity budget constraint, one only needs a
one-dimensional array W[i], as opposed to the two-dimensional W[i, t] described
earlier. Furthermore, the computation of W[i] can be accomplished in constant
time, as there is no need to enumerate all allocations of sparsity budgets to the
children of i. This makes it possible to implement the overall algorithm so that it
runs in linear time.

By appropriately increasing (or decreasing) the value of the parameter λ, one
can “force” the aforementioned algorithm to output a tree that is “small” (or
“large”). In general, it might be impossible to select λ so that the output tree
T has exactly the desired size s. However, [30, 31] have shown that one can
always select λ so that |T | ≤ 2s and the total weight of the nodes outside of T is
within a factor of 2 from the optimum. In the language of Section 2, the algorithm
offers the tail guarantee, while increasing the sparsity budget by a factor of at most
2. The algorithm proceeds by performing a binary search on λ in order to bring
|T | as close to s as possible. By optimizing the process one can achieve a running
time of O(d log d). Note that this method constitutes a bicriterion approximation
algorithm, i.e., it outputs a tree of size 2s.

Open problem 2: Is there a nearly-linear time single-criterion tail-approximation
algorithm for tree sparsity, i.e., an algorithm that returns a tree of size at most s,
satisfies the guarantee of Definition 3, and runs in time O(d logO(1) d)?

The head approximation algorithm builds on the exact tree projection algo-
rithm described earlier. However, instead of running the algorithm with the spar-
sity parameter s, we instead it run it with s′ = O(log d), with reduces the total time
to O(d log d). This enables us to compute a small “chunk” of the optimal tree very

quickly; we also keep the dynamic programming table of the algorithm for fur-
ther use. Our algorithm then uses the greedy approach. Specifically, it maintains
a (growing) solution tree, and in each iteration step it finds the small tree chunk
that improves the weight of the solution the most. The algorithm then updates the
cost of each small tree chunk, which, thanks to the initial preprocessing, can now
be performed in only O(s′2 log d) time. The process continues until the algorithm
constructs a tree of size O(s). It can be seen that the whole algorithm runs in
O(d log d + s log2 d) time.

Experiments. In order to demonstrate the computational efficiency of the ap-
proximate model-projection algorithms for tree sparsity, we show the results of a
running time experiment that originally appeared in [30]. Table 1 compares four
algorithms: (i) the exact tree projection algorithm of [15], (ii) the tail-approximation
algorithm of [30] (both as described above), (iii) a greedy heuristic (without head-
or tail-approximation guarantees), and (iv) an FFT (as a baseline). The input to
the algorithms is the wavelet representation of an 512 × 512 pixel image, i.e.,
d ≈ 260, 000. The sparsity level is set to s ≈ 35, 000. The experiments were con-
ducted on a laptop computer from 2010 equipped with an Intel Core i7 processor
(2.66 GHz) and 8GB of RAM.

Algorithm Exact tree Approx. tree Greedy tree FFT
Runtime (sec) 4.4175 0.0109 0.0092 0.0075

Table 1: Running times of various tree projection algorithms on input data with
parameters d ≈ 260,000, s ≈ 35,000. The times are averaged over 10 trials.

The results show that the approximate tree-projection algorithms is more than
two orders of magnitude faster than the exact tree-projection algorithm (400×
speed-up). Moreover, the approximation algorithm is almost as fast as a heuristic
without provable guarantees. The comparison with the FFT running time also
shows that two FFTs are more expensive than a single invocation of the tail-
approximation algorithm. This is an important comparison because two FFTs
are often the other part of the iterations repeated by sparse recovery algorithms.
Hence the approximate tree-projection step is not a bottleneck in the overall re-
covery algorithm.

4 Graph sparsity
The graph sparsity model is a general sparsity model that allows us to encode
several other sparsity models and give efficient approximation algorithms for all

(a) “Standard” s-sparsity

(c) Tree sparsity

(b) Block sparsity

(d) Cluster sparsity

Figure 4: The graph sparsity model can encode several other structured sparsity
models. (a) By using a graph without edges and setting the number of connected
components to s, we recover “standard” s-sparsity. (b) We can encode the block
sparsity model (see Section 2) by using a line graph and removing the edges be-
tween blocks. (c) A single connected component in a tree graph gives the tree
sparsity model from Section 3. (d) In order to model clusters in an image such
as Figure 1 (a), we can impose a grid graph on the image (each pixel is a node)
and require that the support forms a small number of connected components in
the grid graph.

these models. Formally, the graph sparsity model is defined as follows [35]:2

we associate each coefficient index i ∈ [d] with a node in a given, fixed graph
G = ([d], E). For each support S ⊆ [d], we can then consider properties of
the induced subgraph GS = (S , {(u, v) ∈ E | u ∈ S and v ∈ S }). In particular,
we restrict the set of allowed supports by requiring that GS has at most a given
size s (i.e., S has at most cardinality s) and that GS contains at most g connected
components. By imposing these connectivity constraints, the graph sparsity model
enforces that the supports form a small number of clusters, where the notion of
locality is encoded in the graph G. In order to get an improved sample complexity
in sparse recovery, we are usually interested in the regime where the connected
components have non-trivial size, i.e., g � s.

One attractive feature of the graph sparsity model is its generality: by a proper

2Recently, a weighted version of the graph sparsity model has also been proposed [33]. The
weighted graph model generalizes a larger number of structured sparsity models than the un-
weighted graph sparsity model. In order to simplify our discussion, we focus on the unweighted
case and refer the interested reader to [33] for further details. It is worth noting that the algorith-
mic techniques described here for the unweighted case can also be adapted to the weighted graph
model.

choice of the underlying graph G, we can encode several other structured sparsity
models. As depicted in Figure 4 (a) – (c), the graph sparsity model generalizes
the “standard” s-sparsity model, block sparsity, and tree sparsity. Moreover, we
can encode a natural notion of cluster sparsity in images such as Figure 1 (a)
by interpreting the image as a grid graph and requiring that the support forms
a small number of connected components in this grid graph (see Figure 4 (d)).
Hence by finding a single efficient (ideally, nearly-linear time) model projection
algorithm for the graph sparsity model, we would directly give efficient algorithms
for several other structured sparsity models. Such an algorithm would therefore
address a weakness in the model-based sparse recovery framework of [5]. While
this framework gives an elegant way of combining model projection oracles with
known sparse recovery algorithms, it does not prescribe a general “recipe” for
designing such model projection oracles. Instead, the projection algorithms have
to be invented from scratch for every new model.

Unfortunately, finding exact projections for the graph sparsity model turns out
to be an NP-hard problem. This can be seen via a reduction from the classical
Steiner Tree problem [26]. To be precise, we can encode the decision version of
the unweighted Steiner Tree problem in the graph sparsity projection problem:
given a graph G = ([d], E) with a set of terminal nodes T ⊆ [d], let x ∈ Rd be
such that xi = 1 for i ∈ T and xi = 0 otherwise. Moreover, let s be the threshold
for the Steiner Tree size (“is there a Steiner Tree of size at most s?”) and set the
number of connected components in the graph sparsity model to 1. Now consider
the model projection problem

OPT = min
S ′∈M
‖x − xS ′‖

2
2 .

If OPT is zero, we know that supp(x) ⊆ S for some S ∈ M and hence there is a
Steiner tree of size at most s that connects all the nonzero entries in x. Similarly,
if there is a Steiner Tree S ⊆ [d] of size at most s connecting all the terminal
nodes in T , then there is also a corresponding support S ∈ M such that x − xS = 0
and hence OPT = 0. Since solving the model projection problem allows us to test
whether OPT = 0, model projection for the graph sparsity model is NP-hard.

4.1 Approximation algorithms
Local enumeration. To the best of our knowledge, the first sparse recovery al-
gorithm for the graph sparsity model was given in [35]. Reformulated in our
framework, the authors provide a head approximation algorithm that is based on
the following idea: in the regime where the graph sparsity model improves the
sample complexity in sparse recovery, any support in the graph sparsity model
can be decomposed into O(d/ log d) connected components of size Ω(log d). The

head approximation algorithm then enumerates all such connected components of
size Θ(log d) and incrementally adds the best remaining component to the support
(it is worth noting that this “covering approach” is similar to the head approxi-
mation algorithm for the tree sparsity model described in Section 3). Due to the
local enumeration, the algorithm has a time complexity of O(dc), where c quanti-
fies a trade-off between time and sample complexity (c is always greater than 1).
Since the paper [35] does not give a tail approximation algorithm, the resulting
guarantees for sparse recovery are weaker than those achieved by sparse recovery
algorithms with both head- and tail-approximations.

Prize Collecting Steiner Tree. While the Steiner Tree problem is a source of
computational hardness for exact graph sparsity projections, we can also utilize
the rich body of work on approximation algorithms for various Steiner Tree prob-
lems in order to design approximate model projection algorithms as introduced in
Section 2.2. In particular, algorithms for the prize collecting Steiner tree problem
(PCST) turn out to be very useful.

The PCST problem is a generalization of the classical Steiner tree problem
[8]. Instead of finding the cheapest tree to connect all terminal nodes, we can
omit some terminals from the solution and pay a specific price for each omitted
node. The goal is to find a subtree with the optimal trade-off between the cost
paid for edges connecting a subset of the nodes and the price of the remaining,
unconnected nodes. More formally, let G = (V, E) be an undirected, weighted
graph with edge costs c : E → R+

0 and node prizes π : V → R+
0 . For a subset

of edges E′ ⊆ E, we write c(E′) =
∑

e∈E′ c(e) and adopt the same convention for
node subsets. Moreover, for a node subset V ′ ⊆ V , let V ′ be the complement
V ′ = V \ V ′. Then the goal of the PCST problem is to find a subtree T = (V ′, E′)
such that c(E′) + π(V ′) is minimized (we write c(T) and π(T) if the node and edge
sets are clear from context).

Building on [1], the seminal work of Goemans and Williamson [27] introduced
an efficient approximation algorithm for PCST with the following guarantee:

c(T) + 2π(T) ≤ 2 min
T ′ is a tree

c(T ′) + π(T ′) . (4)

Their overall approach is usually called the Goemans-Williamson (GW) approxi-
mation scheme and originally had a time complexity of O(|V |2 log |V |) (using the
refinement for the unrooted case in [36]). Several papers improved this running
time (e.g., [38, 25]), leading to the nearly-linear time variant in [13] (albeit with a
slightly worse approximation guarantee).

The PCST problem already captures three important aspects of the graph spar-
sity model: (i) there is an underlying graph G, (ii) larger trees are penalized
through the edge costs, and (iii) nodes have prizes that we wish to pick up. If

we set the prizes to correspond to coefficients of our vector x ∈ Rd, i.e., π(i) = x2
i ,

the term π(T) in the PCST objective function becomes π(T) = ‖x − xT ‖
2
2, which

matches the objective in the tail-approximation problem (see Definition 3).
This guarantee is already close to our desired tail approximation guarantee,

but there are two important differences. First, we do not have direct control over
the sparsity in our support because the PCST objective only controls the trade-off

between node prizes and edge costs. Second, the objective in the PCST problem
is to find a single tree T , while the graph sparsity model can contain supports
defined by multiple connected components.

We can address the first issue similar to the case of tree sparsity. By set-
ting all edges to have cost λ, we essentially transform the PCST objective into a
Lagrangian relaxation of the cardinality-constrained tail-approximation problem.
This gives the following approximation guarantee (now in terms of the support
S ⊆ [d]):

λ(|S | − 1) + 2‖x − xS ‖
2
2 ≤ 2 min

S ′⊆[d]
λ(|S ′| − 1) + ‖x − xS ′‖

2
2 .

It is worth noting that the GW scheme does not enable us to solve the Lagrangian
relaxation directly, but a binary search similar to the approach for the tree sparsity
model still gives a constant-factor bicriterion guarantee [33] (both tail approxi-
mation error and the cardinality of the support are within constant factors of the
optimum).

Furthermore, it is possible to generalize the GW scheme to the prize-collecting
Steiner forest problem in which we optimize over a forest with a fixed number of
trees as opposed to a single tree. Building on [23] and [13], the authors of [33]
show that this modification of the GW scheme achieves the same approximation
guarantee as Equation (4) (now minimizing over forests on the right hand side),
and that this variant can still be implemented in nearly-linear time. This yields a
nearly-linear time bicriterion algorithm with the tail approximation guarantee.
Open problem 3: Is there a nearly-linear time, single-criterion tail-approximation
algorithm for cluster sparsity, i.e., an algorithm that returns g connected com-
ponents of total size at most s, satisfies the guarantee of Definition 3 for some
constant cT , and runs in time O(d logO(1) d)?

Interestingly, the forest variant of the GW scheme can also be utilized for a
head approximation algorithm. By varying the node prizes in the binary search
(instead of the edge costs) and post-processing the final result to extract a “high
prize-density” subgraph, the paper [33] also gives a nearly-linear time head ap-
proximation algorithm for the graph sparsity model. Combining these results
yields an efficient algorithm for sparse recovery with the graph sparsity model.

The aforementioned approach yields a constant factor approximation algo-
rithm for general graphs. However, many applications involve graphs with more

specific structure, such as two-dimensional grids or, more generally, planar graphs.
It is known that PCST for planar graphs can be solved in O(d log d) time with an
approximation factor arbitrarily close to 1 (i.e., there is a nearly-linear time ap-
proximation scheme) [21, 6]. Unfortunately, the binary search approach described
above yields a tail approximation algorithm with an approximation factor cT that
is strictly greater than 1.
Open problem 4: Is there a nearly-linear time single-criterion tail-approximation
algorithm for cluster sparsity for planar graphs, i.e., an algorithm that returns g
connected components of total size at most s, satisfies the guarantee of Defini-
tion 3 for some constant cT arbitrarily close to 1, and runs in time O(d logO(1) d)?

5 Sparse recovery
In this section, we describe how the aforementioned algorithms for structured
sparsity can be fruitfully applied in the context of sparse recovery. Formally, the
robust sparse recovery problem is defined as follows: Given an s-sparse vector
x ∈ Rd, suppose we obtain n � d linear measurements (or sketches) of the form
y = Ax + e, where A ∈ Rn×d denotes the measurement matrix and e ∈ Rn is the
“noise" vector. Then, the goal is to efficiently obtain an estimate x̂ such that:∥∥∥x − x̂

∥∥∥
p
≤ C · ‖e‖p (5)

for some approximation factor C and norm parameter p. Observe that if the noise
e is assumed to be zero, then the recovered estimate x̂ must exactly correspond
to the vector x. This general formulation addresses a large number of problems
arising in compressive sensing [14, 19, 24], statistical regression [39, 53], and
data stream algorithms [41]. Depending on the application, the matrix A could be
given, or we might be able to design it in order to optimize the recovery process.

At first glance, recovering the unknown vector x from the measurements y
appears challenging. Indeed, with no further assumptions on the measurement
matrix A, the sparse recovery problem is intractable or impossible [42]. How-
ever, seminal results [19, 14] have shown that there exist classes of “good” mea-
surement matrices A that support efficient sparse recovery in conjunction with
associated recovery algorithms. In particular, these methods produce an estimate
x̂ satisfying (5) with constant approximation factor C and number of measure-
ments n = O(s log(d/s)). Moreover, this bound on the number of measurements
is asymptotically tight for constant approximation factor C [16].

The necessity of the “oversampling factor” log(d/s) is unfortunate since the
logarithmic factor increases the number of measurements significantly. This in-
crease is observed both in theory and practice. Therefore, it is a compelling ques-

tion whether we can reduce the number of measurements even further, ideally
down to the information-theoretic limit n = O(s).

We now describe a general algorithmic framework that simultaneously ad-
dresses both of the above challenges. In particular, the running time of our re-
covery algorithms is nearly-linear in the ambient dimension d for sparsity s small
enough. These constitute the first known nearly-linear time recovery schemes for
multiple structured sparsity models.

The first ingredient of our approach are “good” matrices A that support recov-
ery of structured sparse vectors. We achieve this using a popular notion known as
the restricted isometry property (RIP). A matrix A ∈ Rn×d satisfies the (s, δ)-RIP
if, for all s-sparse vectors x, the following holds:

(1 − δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22 . (6)

In most cases, δ is assumed to be a constant. An analogous condition can be
defined for specific structured sparsity models. The matrix A satisfies the model-
RIP if (6) holds for all vectors x in the sparsity modelM. It is known that there
exist matrices that satisfy the model-RIP with merely n = O(s + log |M|) rows [5].
(Recall thatM is the family of allowed supports for the sparsity modelM.) So for
structured sparsity models that are sufficiently concise (e.g., |M| = 2O(s)), there are
indeed measurement matrices with the desired bound n = O(s).

The second, more challenging aspect of our approach is to develop an algo-
rithmic framework that utilizes the structure present in the unknown vector for
robust sparse recovery. Here, we summarize an approach that specifically makes
use of the head- and tail-approximation oracles developed in Sections 3 and 4.
For full explanations, see [32] and references therein.

Suppose we wish to recover a vector x ∈ M from noisy measurements y =

Ax + e. Moreover, assume that the recovery algorithm has access to approximate
model-projection oracles T (·) and H(·) with approximation factors cT and cH, re-
spectively. Then one can recover an estimate of the unknown vector x by applying
the following iterative update rule:

xi+1 = T
(
xi + H

(
AT (y − Axi)

))
.

This iterative scheme is based on the Iterative Hard Thresholding (IHT) algorithm
of [7]. Therefore, we call this algorithm approximation-tolerant model-based
IHT, or AM-IHT. Extensions of other iterative algorithms for sparse recovery,
such as Compressive Sensing Matching Pursuit (CoSaMP) [44] and expander it-
erative hard thresholding [4, 24], are also possible. See [32] for details.

Assuming that the measurement matrix satisfies the model-RIP with suitable
parameters, the iterates obtained by AM-IHT exhibit geometric convergence:

‖x − xi+1‖2 ≤ α‖x − xi‖2 + β‖e‖2 ,

where α < 1 and β are constants that are controlled by the matrix RIP constant
δ and the approximation factors cT , cH of the approximate-projection oracles T
and H. In other words, the estimation error decreases by a constant factor in
each iteration. One can identify tradeoffs between the number of measurements,
the approximation factors cT and cH, and the convergence ratio α. For example,
keeping cT and cH fixed, a lower value of δ would lead to a lower value of α and
this would mean that the iterates converge faster.

Due to the geometric convergence property, one can show that O(log ‖x‖2
‖e‖2

) it-
erations suffice to recover a robust estimate x̂. The running time of each iteration
of AM-IHT is determined by adding the running times of the head approximation
algorithm H(·), the tail approximation algorithm T (·), and the cost of a matrix-
vector multiplication with A and AT .

Putting all the above ingredients together, we can state the following theorem,
which holds for both tree sparsity and graph sparsity:

Theorem 5. Let A ∈ Rn×d be a model-RIP matrix as discussed above. Let x be
an unknown s-sparse vector having a support belonging to the structured sparsity
model M. Let y = Ax + e be noisy measurements of x. Then, there exists an
algorithm to recover an estimate x̂ such that

∥∥∥x − x̂
∥∥∥

2
≤ C · ‖e‖2 for some fixed

constant C > 0. The algorithm runs in time O(d logO(1) d) in the range s ≤ d1/2−ε

for ε > 0.

We note that the theoretical guarantee in Theorem 5 is only applicable for
s ≤ d1/2−ε, ε > 0. This is because all known matrices satisfying the model-RIP
with only n = O(s) rows utilize fully random matrices, and therefore the matrix-
vector multiplication takes at least Ω(s2) time (see [31] for details). However,
numerical simulations indicate that this limitation does not hold in practice: sub-
sampled Fourier matrices allow matrix-vector multiplication in time O(d log d)
and enable recovery of structured sparse vectors, at least in several experiments
(see Subsection 5.1).

Open problem 5: Are there model-RIP matrices for tree sparsity that have
n = O(s) rows and support matrix-vector multiplication in O(d logO(1) d) time,
for all values of s? Alternatively, does a subsampled Fourier matrix with n =

O(d logO(1) s) rows satisfy the model-RIP for tree sparsity?

5.1 Experiments

We conclude this section with numerical experiments which demonstrate that uti-
lizing structure in sparse recovery leads to an improved sample complexity. The
experiments pertain to the tree-sparsity model and originally appeared in the paper

CoSaMP (SNR=12.5dB) SPGL1 (SNR=22.7dB)

Exact tree (SNR=101.4dB) Approximate tree (SNR=99.2dB)

Figure 5: Results of recovering an image from linear observations using various
algorithms. The parameters are d = 512 × 512, s = 0.04d ≈ 10,000, n = 3.3s ≈
35,000). Both tree-based algorithms accurately recover the ground truth image.

[30]. We refer the reader to the original paper for a full description of the quanti-
tative results. Analogous numerical experiments for the graph sparsity model are
provided in [33].

First, we compare four algorithms on a single test case to illustrate the dif-
ferences in recovery quality. All algorithms received the same number of linear
observations as input; see Figure 5 for the experiment parameters (the linear ob-
servations are subsampled Fourier measurements). The four algorithms are:

• A modification of CoSaMP [44] equipped with the exact tree projection
approach in [15]. This algorithm exploits structured sparsity but has a slow
running time due to the exact projections (see Section 3).

• A modification of CoSaMP with the approximate tail-projection oracle for

2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Oversampling ratio n/s

Pr
ob

ab
ili

ty
of

re
co

ve
ry

Exact tree
Approx. tree
CoSaMP
SPGL1

Figure 6: Comparison of sparse recovery algorithms for tree sparsity. The proba-
bility of recovery is with respect to the random measurement matrix (i.i.d. Gaus-
sian entries) and generated using 100 trial runs.

tree-sparsity discussed in Section 3 (empirically, it suffices to use the tail
algorithm in place of both the head- and tail-approximation oracle). This
algorithm exploits structured sparsity and runs in nearly-linear time.

• The sparse recovery algorithm CoSaMP with “standard” s-sparse projec-
tions. This algorithm is computationally very efficient but does not utilize
the tree structure present in the unknown vector.

• The popular `1-minimization approach (also called Basis Pursuit) as imple-
mented in the software package SPGL1. This algorithm also does not utilize
tree sparsity.

As predicted by the theoretical results, Figure 5 demonstrates that the meth-
ods utilizing structured sparsity achieve accurate recovery, while methods utilizing
only “standard” sparsity offer worse recovery quality. For all practical purposes,
the accuracy achieved by CoSaMP with approximate model projections is equiv-
alent to that of CoSaMP with exact projections. The main benefit of the approxi-
mate projections are their better computational complexity: recall from Section 3
that a single approximate projection is 400× faster than an exact tree-projection.
The gains in running time for the entire sparse recovery method (not only the
projection step) are comparable.

Figure 6 explores the sample complexity of the four algorithms in more detail.
For a fixed vector x ∈ Rd (unknown to the recovery algorithms), we increase the
number of linear observations n available to the recovery algorithms and record

the probability of success.3 The resulting phase transitions indicate at which point
(i.e., for how many linear observations) we can expect the algorithms to recover
the unknown vector x reliably. In this experiment, the vector x is a discretized
piecewise polynomial of dimension d = 1024 with sparsity s = 41 in a suit-
ably chosen wavelet basis (piecewise polynomial signals are known to be approx-
imately tree-sparse in the wavelet domain). Each data point in Figure 6 was gen-
erated by averaging over 100 sample trials using different measurement matrices
from the same i.i.d. Gaussian distribution. We observe that the success probabil-
ity of the approximate method almost matches the performance of CoSaMP with
exact tree-projections.

6 Conclusions

In this survey, we presented an overview of structured sparsity models, associated
algorithms, and their applications. In particular, we showed how approximation
algorithms for combinatorial problems can be used to obtain efficient sparse re-
covery methods. We have also listed several open problems concerning more
efficient algorithms for structured sparsity.

We note that the survey is not meant to be exhaustive. In particular, there are
several other important structured sparsity models such as the Constrained EMD
model [50] or the ∆-separated model [29] where combinatorial algorithms play
an important role. In contrast to the tree and graph sparsity model presented here,
there are currently no known nearly-linear time algorithms for these models.

Open problem 6: Are there nearly-linear time (approximate) model projection
algorithms for the EMD and ∆-separated sparsity models?

Acknowledgments: We thank Tal Wagner for many helpful comments. This
work was supported by grants from the MITEI-Shell program and the Simons
Investigator Award.

References
[1] Ajit Agrawal, Philip Klein, and R Ravi. When trees collide: An approxima-

tion algorithm for the generalized steiner problem on networks. In Proceed-
ings of the Twenty-third Annual ACM Symposium on Theory of Computing
(STOC), 1991.

3Here, “successful recovery” is defined as the event when the `2-error of the estimate x̂ is
within 5% of the `2-norm of the original vector x.

[2] Richard G. Baraniuk. Optimal tree approximation with wavelets. In SPIE
Wavelet Applications in Signal and Image Processing, 1999.

[3] Marko Bohanec and Ivan Bratko. Trading accuracy for simplicity in deci-
sion trees. Machine Learning, 15(3):223–250, 1994.

[4] Bubacarr Bah, Luca Baldassarre, and Volkan Cevher. Model-based sketch-
ing and recovery with expanders. In Proceedings of the Twenty-Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1529–1543. SIAM,
2014.

[5] Richard G. Baraniuk, Volkan Cevher, Marco F. Duarte, and Chinmay
Hegde. Model-based compressive sensing. IEEE Transactions on Infor-
mation Theory, 56(4):1982–2001, 2010.

[6] MohammadHossein Bateni, Chandra Chekuri, Alina Ene, Mohammad T.
Hajiaghayi, Nitish Korula, and Daniel Marx. Prize-collecting steiner prob-
lems on planar graphs. In Proceedings of the Twenty-second Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 1028–1049, 2011.

[7] Thomas Blumensath and Mike E. Davies. Iterative hard thresholding for
compressive sensing. Applied and Computational Harmonic Analysis,
27(3):265–274, 2009.

[8] Daniel Bienstock, Michel X. Goemans, David Simchi-Levi, and David P.
Williamson. A note on the prize collecting traveling salesman problem.
Mathematical Programming, 59(1-3):413–420, 1993.

[9] Richard G. Baraniuk and Douglas L. Jones. A signal-dependent time-
frequency representation: optimal kernel design. IEEE Transactions on
Signal Processing, 41(4):1589–1602, 1993.

[10] Francis Bach, Rodolphe Jenatton, Julien Mairal, and Guillaume Obozinski.
Optimization with sparsity-inducing penalties. Foundations and Trends in
Machine Learning, 4(1):1–106, 2012.

[11] Francis Bach, Rodolphe Jenatton, Julien Mairal, and Guillaume Obozin-
ski. Structured sparsity through convex optimization. Statistical Science,
27(4):450–468, 11 2012.

[12] https://commons.wikimedia.org/wiki/File:Lichtenstein_img_
processing_test.png, 2007.

[13] Richard Cole, Ramesh Hariharan, Moshe Lewenstein, and Ely Porat. A
faster implementation of the Goemans-Williamson clustering algorithm. In
Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pages 17–25, 2001.

[14] Emmanuel J. Candès, Justin Romberg, and Terence Tao. Robust uncertainty
principles: exact signal reconstruction from highly incomplete frequency
information. IEEE Transactions on Information Theory, 52(2):489–509,
2006.

https://commons.wikimedia.org/wiki/File:Lichtenstein_img_processing_test.png
https://commons.wikimedia.org/wiki/File:Lichtenstein_img_processing_test.png

[15] Coralia Cartis and Andrew Thompson. An exact tree projection algorithm
for wavelets. IEEE Signal Processing Letters, 20(11):1026–1029, 2013.

[16] Khanh Do Ba, Piotr Indyk, Eric Price, and David P. Woodruff. Lower
bounds for sparse recovery. In Proceedings of the 21st Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1190–1197, 2010.

[17] Marco F. Duarte and Yonina C. Eldar. Structured compressed sensing:
From theory to applications. IEEE Transactions on Signal Processing,
59(9):4053–4085, 2011.

[18] David L. Donoho. Cart and best-ortho-basis: a connection. Annals of Statis-
tics, 25(5):1870–1911, 1997.

[19] David L. Donoho. Compressed sensing. , IEEE Transactions on Informa-
tion Theory, 52(4):1289–1306, 2006.

[20] Marwa El Halabi and Volkan Cevher. A totally unimodular view of struc-
tured sparsity. In Proceedings of the 18th International Conference on Ar-
tificial Intelligence and Statistics (AISTATS), 2015.

[21] David Eisenstat, Philip Klein, and Claire Mathieu. An efficient polynomial-
time approximation scheme for steiner forest in planar graphs. In Proceed-
ings of the twenty-third annual ACM-SIAM symposium on Discrete Algo-
rithms, pages 626–638. SIAM, 2012.

[22] Yonina Eldar and Moshe Mishali. Robust recovery of signals from a
structured union of subspaces. IEEE Transactions on Information Theory,
55(11):5302–5316, 2009.

[23] Paulo Feofiloff, Cristina G. Fernandes, Carlos E. Ferreira, and José Coelho
de Pina. A note on Johnson, Minkoff and Phillips’ algorithm for the prize-
collecting Steiner tree problem. Computing Research Repository (CoRR),
abs/1004.1437, 2010.

[24] Simon Foucart and Holger Rauhut. A Mathematical Introduction to Com-
pressive Sensing. Springer, 2013.

[25] Harold N. Gabow, Michel X. Goemans, and David P. Williamson. An effi-
cient approximation algorithm for the survivable network design problem.
Mathematical Programming, 82(1-2):13–40, 1998.

[26] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[27] Michel X. Goemans and David P. Williamson. A general approximation
technique for constrained forest problems. SIAM Journal on Computing,
24(2):296–317, 1995.

[28] Lihan He and Lawrence Carin. Exploiting structure in wavelet-based
bayesian compressive sensing. IEEE Transactions on Signal Processing,
57(9):3488–3497, 2009.

[29] Chinmay Hegde, Marco F Duarte, and Volkan Cevher. Compressive sensing
recovery of spike trains using a structured sparsity model. In SPARS’09-
Signal Processing with Adaptive Sparse Structured Representations, 2009.

[30] Chinmay Hegde, Piotr Indyk, and Ludwig Schmidt. A fast approximation
algorithm for tree-sparse recovery. In International Symposium on Infor-
mation Theory (ISIT), 2014.

[31] Chinmay Hegde, Piotr Indyk, and Ludwig Schmidt. Nearly linear-time
model-based compressive sensing. In Automata, Languages, and Program-
ming (ICALP), volume 8572 of Lecture Notes in Computer Science, pages
588–599. 2014.

[32] Chinmay Hegde, Piotr Indyk, and Ludwig Schmidt. Approximation algo-
rithms for model-based compressive sensing. IEEE Transactions on Infor-
mation Theory, 61(9):5129–5147, 2015. Conference version appeard in the
Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA 2014).

[33] Chinmay Hegde, Piotr Indyk, and Ludwig Schmidt. A nearly-linear time
framework for graph-structured sparsity. In Proceedings of the 32nd Inter-
national Conference on Machine Learning (ICML), pages 928–937. JMLR
Workshop and Conference Proceedings, 2015.

[34] http://www.nasa.gov/mission_pages/hubble/science/xdf.
html, 2012.

[35] Junzhou Huang, Tong Zhang, and Dimitris Metaxas. Learning with struc-
tured sparsity. The Journal of Machine Learning Research, 12:3371–3412,
2011.

[36] David S. Johnson, Maria Minkoff, and Steven Phillips. The prize col-
lecting Steiner tree problem: Theory and practice. In Proceedings of the
Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 760–769, 2000.

[37] Laurent Jacob, Guillaume Obozinski, and Jean-Philippe Vert. Group Lasso
with overlap and graph Lasso. In Proceedings of the 26th Annual Interna-
tional Conference on Machine Learning (ICML), pages 433–440, 2009.

[38] Philip Klein. A data structure for bicategories, with application to speeding
up an approximation algorithm. Information Processing Letters, 52(6):303–
307, 1994.

[39] Seyoung Kim and Eric P. Xing. Tree-guided group Lasso for multi-task
regression with structured sparsity. In Proceedings of the 27th International
Conference on Machine Learning (ICML), pages 543–550, 2010.

[40] Julien Mairal, Rodolphe Jenatton, Guillaume Obozinski, and Francis Bach.
Convex and network flow optimization for structured sparsity. The Journal
of Machine Learning Research, 12:2681–2720, 2011.

http://www.nasa.gov/mission_pages/hubble/science/xdf.html
http://www.nasa.gov/mission_pages/hubble/science/xdf.html

[41] S. Muthukrishnan. Data streams: Algorithms and applications. Foundations
and Trends in Theoretical Computer Science, 2005.

[42] Balas Kausik Natarajan. Sparse approximate solutions to linear systems.
SIAM journal on computing, 24(2):227–234, 1995.

[43] Sahand N. Negahban, Pradeep Ravikumar, Martin J. Wainwright, and Bin
Yu. A unified framework for high-dimensional analysis of m-estimators
with decomposable regularizers. Statistical Science, 27(4):538–557, 11
2012.

[44] Deanna Needell and Joel A. Tropp. CoSaMP: Iterative signal recovery from
incomplete and inaccurate samples. Applied and Computational Harmonic
Analysis, 26(3):301–321, 2009.

[45] Polina Rozenshtein, Aris Anagnostopoulos, Aristides Gionis, and Niko-
laj Tatti. Event detection in activity networks. In Proceedings of the
20th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD), pages 1176–1185, 2014.

[46] Nikhil S. Rao, Ben Recht, and Robert D. Nowak. Universal measurement
bounds for structured sparse signal recovery. In Proceedings of the 15th In-
ternational Conference on Artificial Intelligence and Statistics (AISTATS),
volume 22 of JMLR Proceedings, pages 942–950, 2012.

[47] Siddhartha Satpathi, Luca Baldassarre, and Volkan Cevher. Sparse group
covers and greedy tree approximations. In IEEE Internation Symposium on
Information Theory (ISIT), 2015.

[48] Noah Simon, Jerome Friedman, Trevor Hastie, and Robert Tibshirani. A
sparse-group Lasso. Journal of Computational and Graphical Statistics,
22(2):231–245, 2013.

[49] Jerome M. Shapiro. Embedded image coding using zerotrees of wavelet
coefficients. IEEE Transactions on Signal Processing, 41(12):3445–3462,
1993.

[50] Ludwig Schmidt, Chinmay Hegde, and Piotr Indyk. The constrained Earth
Mover Distance model, with applications to compressive sensing. In In-
ternational Conference on Sampling Theory and Applications (SAMPTA),
2013.

[51] Ludwig Schmidt, Chinmay Hegde, Piotr Indyk, Jonathan Kane, Ligang Lu,
and Detlef Hohl. Automatic fault localization using the generalized Earth
Mover’s Distance. In IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2014.

[52] Martin J. Wainwright. Structured regularizers for high-dimensional prob-
lems: Statistical and computational issues. Annual Review of Statistics and
Its Application, 1(1):233–253, 2014.

[53] Ming Yuan and Yi Lin. Model selection and estimation in regression with
grouped variables. Journal of the Royal Statistical Society: Series B (Sta-
tistical Methodology), 68(1):49–67, 2006.

	Introduction
	Structured sparsity
	Structured sparsity in sparse recovery
	Related work
	Outline of the paper
	Notation

	Structured sparsity models
	Model projection
	Approximate model projections.

	Tree sparsity
	Graph sparsity
	Approximation algorithms

	Sparse recovery
	Experiments

	Conclusions

